Page 21 of 23
Journal of the American Chemical Society
Aromatic Interaction Strengths on the Structure of the Carbohydrate. J. Am. Chem. Soc. 2016, 138,
7636-7648.
1
2
3
4
5
6
7
8
5.- a) Jiménez-Moreno, E.; Jiménez-Osés, G.; Gómez, A.M.; Santana, A.G.; Corzana, F.;
Bastida, A.; Jiménez-Barbero, J.; Asensio, J.L. A thorough experimental study of CH/π interactions
in water: quantitative structure-stability relationships for carbohydrate/aromatic complexes.
Chemical Science 2015, 6, 11, 6076-6085. b) Jiménez-Moreno, E.; Gómez, A.M.; Bastida, A.;
Corzana, F.; Jiménez-Oses, G.; Jiménez-Barbero, J.; Asensio, J.L. Modulating weak interactions for
molecular recognition: A dynamic combinatorial analysis for assessing the contribution of
electrostatics to the stability of CH-π bonds in water. Angew. Chem. Int. Edit. 2015, 54, 4344-4348.
c) Santana, A.G.; Jiménez-Moreno, E.; Gómez, A.M.; Corzana, F.; González, C.; Jiménez-Oses, G.;
Jiménez-Barbero, J.; Asensio, J.L. A dynamic combinatorial approach for the analysis of weak
carbohydrate/aromatic complexes: Dissecting facial selectivity in CH/π stacking interactions. J. Am.
Chem. Soc. 2013, 135, 3347-3350.
6.- a) Ma, J.C.; Dougherty, D.A. The cation-π interaction. Chem. Rev. 1997, 97, 1303-1324.
b) Dougherty, D.A. Cation-π interactions in chemistry and biology: A new view of benzene, Phe, Tyr,
and Trp. Science 1996, 271, 163-168.
7.- Neel, A.J.; Hilton, M.J.; Sigman, M.S.; Toste, F.D. Exploiting non-covalent π interactions
for catalyst design. Nature 2017, 543, 636-646.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
8.- a) Adero, P.O.; Amaraseka, H.; Wen, P.; Bohe, L.; Crich, D. The Experimental Evidence
in Support of Glycosylation Mechanisms at the SN1-SN2 Interface. Chem. Rev. 2018, 118, 8242-
8284. b) Adero, P.O.; Furukawa, T.; Huang, M.; Mukherjee, D.; Retailleau, P.; Bohé, L.; Crich, D.
Cation clock reactions for the determination of relative reaction kinetics in glycosylation reactions:
Applications to gluco- and mannopyranosyl sulfoxide and trichloroacetimidate type donors. J. Am.
Chem. Soc. 2015, 137, 10336-10345. c) Huang, M.; Retailleau, P.; Bohé, L.; Crich, D. Cation clock
permits distinction between the mechanisms of α- And β-O- and β-C-glycosylation in the
mannopyranose series: Evidence for the existence of a mannopyranosyl oxocarbenium ion. J. Am.
Chem. Soc. 2012, 134, 14746-14749. d) Huang, M.; Garrett, G.E.; Birlirakis, N.; Bohé, L.; Pratt,
13
D.A.; Crich, D. Dissecting the mechanisms of a class of chemical glycosylation using primary C
kinetic isotope effects. Nat. Chem. 2012, 4, 663-667. e) Crich, D. Mechanism of a chemical
glycosylation reaction. Acc. Chem. Res. 2010, 43, 1144-1153. f) Crich, D.; Chandrasekera, N.S.
Mechanism of 4,6-O-benzylidene-directed β-mannosylation as determined by α-deuterium kinetic
isotope effects. Angew. Chem. Int. Ed. 2004, 43, 5386-5389.
9.- a) Bennet, A.J.; Sinnot, M.L. Complete kinetic isotope effect description of transition states
for acid-catalyzed hydrolyses of methyl .alpha.- and .beta.-glucopyranosides. J. Am. Chem. Soc. 1986,
108, 7287-7294. b) Namchuk, M.N.; McCarter, J.D.; Becalski, A.; Andrews, T.; Withers, S.G. The
Role of Sugar Substituents in Glycoside Hydrolysis. J. Am. Chem. Soc. 2000, 122, 1270-1277. c)
Chan, J.; Tang, A.; Bennet, A.J. A Stepwise Solvent-Promoted SNi Reaction of α-d-Glucopyranosyl
Fluoride: Mechanistic Implications for Retaining Glycosyltransferases. J. Am. Chem. Soc. 2012, 134,
1212-1220. d) Beaver, M.G.; Buscagan, T.M.; Lavinda, O.; Woerpel, K.A. Stereoelectronic Model to
Explain Highly Stereoselective Reactions of Seven-Membered-Ring Oxocarbenium-Ion
Intermediates. Angew. Chem. Int. Ed. 2016, 55, 1816-1819. e) Smith, D.M.; Woerpel, K.A.
Electrostatic interactions in cations and their importance in biology and chemistry. Org. Biomol.
Chem. 2006, 4, 1195-1201. f) van Rijssel, E.R.; van Delft, P.; Lodder, G.; Overkleeft, H.S.; van der
Marel, G.A.; Filippov, D.V.; Codꢀe, J.D.C. Furanosyl oxocarbenium ion stability and
stereoselectivity. Angew. Chem. Int. Ed. 2014, 53, 10381-10385. g) Ayala, L.; Lucero, C.G.; Romero,
J.A.C.; Tabacco, S.A.; Woerpel, K.A. Stereochemistry of Nucleophilic Substitution Reactions
Depending upon Substituent: Evidence for Electrostatic Stabilization of Pseudoaxial Conformers of
Oxocarbenium Ions by Heteroatom Substituents. J.Am. Chem. Soc. 2003, 125, 15521-15528.
10.- a) Chatterjee, S.; Moos, S.; Hentschel, F.; Gilmore, K.; Seeberger, P.H. An Empirical
Understanding of the Glycosylation Reaction. J. Am. Chem. Soc. 2018, 140, 11942-11953. b)
Heuckendorff, M.; Bendix, J.; Pedersen, C.M.; Bols, M. β-selective mannosylation with a 4,6-
silylene-tethered thiomannosyl donor. Org. Lett. 2014, 16, 1116-1119.
21
ACS Paragon Plus Environment