C O M M U N I C A T I O N S
CN and CD3OD are much higher than those in CH3OH. This
suggests a strong interaction between the complexes and CH3OH,
which eventually leads to some decomposition (as evidenced by
the NMR data). The absence of typical Tb3+ ion excitation bands
in the excitation spectra and the ligand-centered luminescence in
the emission spectra of the 1 and 2 indicates that the ligand-to-
metal energy transfer takes place efficiently.11
Acknowledgment. We thank the Robert A. Welch Foundation
(Grant F-816) for support.
Supporting Information Available: Details of the synthesis and
characterization of H2L, 1 and 2, a discussion of the structural
differences between 1 and 2, views of the crystal structures of 1 and 2,
view of the structure of the monolanthanide complex [LnZnL(NO3)3],
1H NMR spectra of 1 in CD3CN, UV-vis spectra of free H2L and 1 in
CH3CN, excitation and emission spectrum of 1 in CH3OH. Crystal-
lographic files in CIF format. This material is available free of charge
Figure 2. A view of the molecular structure of 2. Hydrogen atoms are
omitted for clarity. X1A‚‚‚X1B 3.955 Å, X1C‚‚‚X1D 3.593 Å.
References
(1) (a) Lehn, J.-M. Supramolecular Chemistry: Concepts and PerspectiVes;
VCH: Weinheim, Germany, 1995. (b) Piguet, C.; Bu¨nzli, J.-C. G. Chem.
Soc. ReV. 1999, 28, 347. (c) Piguet, C. Chimia 1996, 50, 144-153.
(2) (a) Sabbatini, N.; Guardigli, M.; Lehn, J. M. Coord. Chem. ReV. 1993,
123, 201-228. (b) Guerriero, P.; Tamburini, S.; Vigato, P. A. Coord.
Chem. ReV. 1995, 139, 17-243.
(3) (a) Ishikawa, N.; Iino, T.; Kaizu, Y. J. Am. Chem. Soc. 2002, 124, 11440-
11447. (b) Ishikawa, N.; Kaizu, Y. J. Phys. Chem. 1996, 100, 8722-
8730. See also: (c) Pan, N.; Bian, Y.; Fukuda, T.; Yokoyama, M.; Li,
R.; Neya, S.; Jiang, J.; Kobayashi, N. Inorg. Chem. 2004, 43, 8242-
8244.
(4) (a) Yang, X.-P.; Kang, B.-S.; Wong, W.-K.; Su, C.-Y.; Liu, H.-Q. Inorg.
Chem. 2003, 42, 169-179. (b) Yang, X.-P.; Su, C.-Y.; Kang, B.-S.; Fong,
X.-L.; Xiao, W.-L.; Liu, H.-Q. J. Chem. Soc., Dalton Trans. 2000, 3253-
3260.
(5) (a) Costes, J.-P.; Dupuis, A.; Laurent, J.-P. Inorg. Chim. Acta 1998, 268,
125-130. (b) Costes, J.-P.; Laussac, J.-P.; Nicode`me, F. J. Chem. Soc.,
Dalton Trans. 2002, 2731-2736. (c) Liu, G.; Na, C.; Liu, B.; Mao, K.
Polyhedron 1990, 9, 2019-2022. (d) Chen, H.; Archer, R. D. Inorg. Chem.
1994, 33, 5195-5202.
Figure 3. The emission spectra of free H2L, 1, and 2 in CH3CN.
Concentrations: 1.2 × 10-6 M (H2L); 5.6 × 10-5 M (1); 5.2 × 10-5
M
(6) (a) Cai, Y.-P.; Ma, H.-Z.; Kang, B.-S.; Su, C.-Y.; Zhang, W.; Sun, J.;
Xiong, Y.-L. J. Organomet. Chem. 2001, 628, 99-106. (b) Hogerheide,
M. P.; Boersma, J.; Konten, G. V. Coord. Chem. ReV. 1996, 155, 87-
126. (c) Xie, W.; Heeg, M. J.; Wang, P. G. Inorg. Chem. 1999, 38, 2541-
2543.
(2).
Molar conductivity studies in CH3CN confirmed a 1:1 electrolyte
for 1, while 2 was neutral, in accordance with the solid-state
structures. 1H NMR spectra of 1 and 2 in CD3CN contain multiple
broad peaks ranging from -60 to +60 ppm (Figure S6, Supporting
Information) and remain unchanged over a month-long period.
(7) Crystal data: (1) [Tb3L4(H2O)2]‚Cl‚9CH3OH‚4H2O, C97H112Br8ClN8O31
-
Tb3, M ) 3037.42, monoclinic, space group P2(1)/c, a ) 22.764(5) Å, b
) 19.015(4) Å, c ) 29.285(6) Å, â ) 104.78(3)°, V ) 12257 (4) Å3, Z
) 4, Dc ) 1.621 g cm-3, µ(Mo KR) ) 4.412 mm-1, F(000) ) 5776, T
) 153 K, R1 ) 0.0845, wR2 ) 0.1694 for 27 837 independent reflections
with a goodness of fit of 0.976. The crystal of 1 was sealed in a glass
capillary along with the solution.
1
However, in CD3OD, H NMR spectra develop additional peaks
over this time frame, suggesting that a slow decomposition process
takes place in this solvent. Both 1 and 2 exhibit green luminescence
in the solid state. In solutions of CH3CN, CH3OH, and CD3OD,
the free ligand H2L exhibits strong absorption bands at 235, 280,
and 335 nm. These maxima are all red-shifted on metal ion
coordination. Excitation of the ligand-centered absorption bands
of both 1 and 2 produces the typical emission bands of the Tb(III)
ion (5D4 f 7Fn transitions, n ) 6, 5, 4, and 3; Figure 3), while the
ligand-centered 1π-π* emission was not detected. The fluorescence
quantum yields (Φem) of 1 and 2 in CH3CN are 0.153 and 0.181,
respectively.10 The quantum yield of 1 is slightly lower than that
of 2, probably due to the coordination of two water molecules which
can quench lanthanide luminescence. With the same absorbance
value of 255 nm for both 1 and 2, the emission intensities in CH3-
(8) Crystal data: (2) [Tb3L3(OAc)2Cl]‚2C2H5OH‚H2O‚(C2H5)2O, C78H78Br6-
ClN6O20Tb3, M ) 2411.14, monoclinic, space group P2(1)/n, a ) 20.211-
(4) Å, b ) 22.089(4) Å, c ) 20.519(4) Å, â ) 114.69(3)°, V ) 8323 (3)
Å3, Z ) 4, Dc ) 1.919 g cm-3, µ(Mo KR) ) 5.507 mm-1, F(000) )
4656, T ) 153 K, R1 ) 0.0814, wR2 ) 0.1519 for 17 651 independent
reflections with a goodness of fit of 1.015. The crystal of 2 was sealed in
a glass capillary along with the solution.
(9) Reaction of Ln(NO3)3‚6H2O, Zn(OAc)2‚2H2O, and H2L produced the
heterobimetallic complexes, [ZnLnL(NO3)3] (Ln ) Eu, Nd): Yang, X.-
P.; Jones, R. A. Unpublished data.
(10) Fluorescence quantum yields were determined by using quinine sulfate
(Φem ) 0.546 in 0.5 M H2SO4) as standard for the Tb3+ complex: Meech,
S. R.; Philips, D. J. J. Photochem. 1983, 23, 193-217. Values of relative
emission intensities (298 K) at 546 nm for 1 and 2: CH3CN (12.5, 14.8),
CH3OH (1.0, 1.3), CD3OD (9.8, 3.1). Concentrations were adjusted to
give the same absorbance value at 255 nm for all samples.
(11) Petoud, S.; Cohen, S. M.; Bu¨nzli, J.-C. G.; Raymond, K. N. J. Am. Chem.
Soc. 2003, 125, 13324-13325.
JA051292C
9
J. AM. CHEM. SOC. VOL. 127, NO. 21, 2005 7687