10.1002/ejoc.201901629
European Journal of Organic Chemistry
COMMUNICATION
chamber 2, 0.10 mmol of nitrostyrene, palladium acetate (5 mol %),
tetramethylphenathroline (10 mol %) and 1 mL of DMF were added to
chamber 3. The 3-chamber reactor was sealed from outer environment
while allowing gas exchange among each other. Then the frozen reaction
mixture in chamber 1 was allowed to thaw and stir until effervescence of
CO2 was no longer observed. Chamber 3 was heated at 100 °C while
chamber 1 and 2 were stirring at room temperature. After 14 h, the reaction
mixture was cooled to room temperature and filtered through a pad of silica
gel. The filtrate was concentrated in vacuo, and the residue was purified
using MPLC to afford the N-heterocycle.
Org. Chem. 2015, 80, 4783; f) N. H. Ansari, C. A. Dacko, N. G. Akhmedov,
B. C. G. Söderberg, J. Org. Chem. 2016, 81, 9337; g) F. Ragaini, P.
Sportiello, S. Cenini, J. Organomet. Chem. 1999, 577, 283; h) K. Okuro,
J. Gurnham, H. Alper, J. Org. Chem. 2011, 76, 4715; i) K. Okuro, J.
Gurnham, H. Alper, Tetrahedron Lett. 2012, 53, 620; j) J. H. Smitrovich,
I. W. Davies, Org. Lett. 2004, 6, 533; k) I. W. Davies, J. H. Smitrovich, R.
Sidler, C. Qu, V. Gresham, C. Bazaral, Tetrahedron 2005, 61, 6425.
a) M. Baumann, I. R. Baxendale, S. V. Ley, N. Nikbin, Beilstein J. Org.
Chem. 2011, 7, 442; b) E. Vitaku, D. T. Smith, J. T. Njardarson, J. Med.
Chem. 2014, 57, 10257; c) N. A. McGrath, M. Brichacek, J. T. Njardarson,
J. Chem. Educ. 2010, 87, 1348; d) M. Bartholow, Pharm. Times.
a) D. S. Laitar, P. Müller, J. P. Sadighi, J. Am. Chem. Soc. 2005, 127,
17196; b) M. T. Whited, R. H. Grubbs, J. Am. Chem. Soc. 2008, 130,
5874; c) C. Kleeberg, M. S. Cheung, Z. Lin, T. B. Marder, J. Am. Chem.
Soc. 2011, 133, 19060; d) R. Dobrovetsky, D. W. Stephan, Angew. Chem.
Int. Ed. 2013, 52, 2516.
[5]
[6]
Acknowledgments
We are grateful to the National Science Foundation CHE-
1564959. We thank Mr. Furong Sun (UIUC) for HRMS data.
[7]
[8]
a) L. Gu, Y. Zhang, J. Am. Chem. Soc. 2010, 132, 914; b) V. Nair, V.
Varghese, R. R. Paul, A. Jose, C. R. Sinu, R. S. Menon, Org. Lett. 2010,
12, 2653.
Keywords: carbon dioxide • palladium • CO equivalent • N-
a) C. Lescot, D. U. Nielsen, I. S. Makarov, A. T. Lindhardt, K. Daasbjerg,
T. Skrydstrup, J. Am. Chem. Soc. 2014, 136, 6142; b) P. Hermange, A.
T. Lindhardt, R. H. Taaning, K. Bjerglund, D. Lupp, T. Skrydstrup, J. Am.
Chem. Soc. 2011, 133, 6061.
heterocycle • reductive cyclization
[1]
A. M. Appel, J. E. Bercaw, A. B. Bocarsly, H. Dobbek, D. L. DuBois, M.
Dupuis, J. G. Ferry, E. Fujita, R. Hille, P. J. A. Kenis, C. A. Kerfeld, R. H.
Morris, C. H. F. Peden, A. R. Portis, S. W. Ragsdale, T. B. Rauchfuss, J.
N. H. Reek, L. C. Seefeldt, R. K. Thauer, G. L. Waldrop, Chem. Rev.
2013, 113, 6621.
[9]
See Supporting Information for more details.
[10] F. Zhou, D.-S. Wang, T. G. Driver, Adv. Synth. Catal. 2015, 357, 3463.
[11] For other Pd-catalyzed reductive cyclization conditions investigated,
please see the Supporting Information.
[12] a) D. Aaron, C. Tsouris, Sep. Sci. Technol. 2005, 40, 321; b) D. M.
D'Alessandro, B. Smit, J. R. Long, Angew. Chem. Int. Ed. 2010, 49, 6058;
c) D. Surovtseva, R. Amin, A. Barifcani, Chem. Eng. Res. Des. 2011, 89,
1752; d) C. M. Quintella, S. A. Hatimondi, A. P. S. Musse, S. F. Miyazaki,
G. S. Cerqueira, A. d. A. Moreira, Energy Procedia 2011, 4, 2050; e) D.
Y. C. Leung, G. Caramanna, M. M. Maroto-Valer, Renew. Sust. Energy
Rev. 2014, 39, 426; f) S. M. Safdarnejad, J. D. Hedengren, L. L. Baxter,
Appl. Energy 2015, 149, 354.
[2]
a) T. Sakakura, J.-C. Choi, H. Yasuda, Chem. Rev. 2007, 107, 2365; b)
D. J. Darensbourg, Chem. Rev. 2007, 107, 2388; c) T. Sakakura, K.
Kohno, Chem. Commun. 2009, 1312; d) M. North, R. Pasquale, C.
Young, Green Chem. 2010, 12, 1514; e) M. Cokoja, C. Bruckmeier, B.
Rieger, W. A. Herrmann, F. E. Kühn, Angew. Chem. Int. Ed. 2011, 50,
8510; f) Y. Tsuji, T. Fujihara, Chem. Commun. 2012, 48, 9956; g) D. J.
Darensbourg, S. J. Wilson, Green Chem. 2012, 14, 2665; h) N. Kielland,
C. J. Whiteoak, A. W. Kleij, Adv. Synth. Catal. 2013, 355, 2115; i) C.
Maeda, Y. Miyazaki, T. Ema, Catal. Sci. Tech. 2014, 4, 1482.
[13] In addition to CO2, the benchmark parameters of gaseous composition of
flue gas was reported Long and co-workers in ref 12b to be 1.1% H2S
and 0.2% H2O precombustion and 500 ppm NOx, <800 ppm SOx and 5–
7% H2O postcombustion.
[3]
[4]
a) R. Francke, B. Schille, M. Roemelt, Chem. Rev. 2018, 118, 4631; b)
A. J. Morris, G. J. Meyer, E. Fujita, Acc. Chem. Res. 2009, 42, 1983; c)
J. L. White, M. F. Baruch, J. E. Pander, Y. Hu, I. C. Fortmeyer, J. E. Park,
T. Zhang, K. Liao, J. Gu, Y. Yan, T. W. Shaw, E. Abelev, A. B. Bocarsly,
Chem. Rev. 2015, 115, 12888; d) C. Costentin, M. Robert, J.-M. Savéant,
Acc. Chem. Res. 2015, 48, 2996.
[14] For other leading references on the composition of flue gas, see: a) J.
Wilcox, R. Haghpanah, E. C. Rupp, J. He, K. Lee, Ann. Rev. Chem.
Biomol. Eng. 2014, 5, 479; b) L. K. G. Bhatta, S. Subramanyam, M. D.
Chengala, S. Olivera, K. Venkatesh, J. Cleaner Prod. 2015, 103, 171.
a) M. Akazome, T. Kondo, Y. Watanabe, J. Org. Chem. 1993, 58, 310;
b) M. Akazome, T. Kondo, Y. Watanabe, J. Org. Chem. 1994, 59, 3375;
c) B. C. Söderberg, J. A. Shriver, J. Org. Chem. 1997, 62, 5838; d) S. W.
Dantale, B. C. G. Söderberg, Tetrahedron 2003, 59, 5507; e) Y. Zhang,
J. W. Hubbard, N. G. Akhmedov, J. L. Petersen, B. C. G. Söderberg, J.
This article is protected by copyright. All rights reserved.