Journal of the American Chemical Society
Article
C.-G.; Kim, D.-S.; Urabe, D.; Wang, J.; Kim, J. T.; Liu, X.; Sasaki, T.;
Kishi, Y. J. Am. Chem. Soc. 2009, 131, 15387.
(12) Knochel, P.; Rao, C. J. Tetrahedron 1993, 49, 29.
(13) Kress, M. H.; Ruel, R.; Miller, W. H.; Kishi, Y. Tetrahedron Lett.
1993, 34, 6003.
REFERENCES
■
(1) For isolation/structure elucidation of the halichondrins from the
marine sponge Halichondria okadai by Uemura and Hirata, see:
(a) Uemura, D.; Takahashi, K.; Yamamoto, T.; Katayama, C.; Tanaka,
J.; Okumura, Y.; Hirata, Y. J. Am. Chem. Soc. 1985, 107, 4796.
(b) Hirata, Y.; Uemura, D. Pure Appl. Chem. 1986, 58, 701.
(2) For isolation of the halichondrins from different species of
sponges, see: (a) Pettit, G. R.; Herald, C. L.; Boyd, M. R.; Leet, J. E.;
Dufresne, C.; Doubek, D. L.; Schmidt, J. M.; Cerny, R. L.; Hooper, J.
(14) Our research efforts in this area were recorded in three
dissertations: (a) Kress, M. H. Applications of the Ni(II)/Cr(II)-
Mediated Coupling Reaction to the Synthesis of the Taxane
Diterpenes, Ph.D. Thesis, Harvard University, January, 1995.
(b) Sheng, X. C. Total Synthesis of (+)-Cinnamoyltaxicin-I Triacetate,
Ph.D. Thesis, Harvard University, September, 1998. (c) Jongwon, L.
Total Synthesis of Taxol, Ph.D. Thesis, Harvard University, July, 2000.
(15) The coupling condition routinely used for ligand optimization
with the toolbox approach, cf., ref 11d.
(16) We anticipated that (R)-11 was predominantly formed because
the Cr-catalyst, prepared from an optically active sulfonamide (S)-12,
was used. 1H NMR analysis of its (R)- and (S)-Mosher esters indicated
that its optical purity was ∼70% ee. Because our goal of this study was
to demonstrate the efficiency of coupling, we did not attempt to
improve the asymmetric induction, for example, by adopting the
toolbox approach (ref 11d). For the same reason, we did not examine
the optical purity for the coupling products listed in Tables 1, 2, and 4.
(17) In spite of only 27% isolated yield, no distinct byproduct(s) was
detected, i.e., TLC showed a streaking line, besides 11.
(18) Liu, X.; Li, X.; Chen, Y.; Hu, Y.; Kishi, Y. J. Am. Chem. Soc. 2012,
134, 6136.
(19) For cis → trans isomerization of alkenyl Ni(II)-species, for
example see: (a) Huggins, J. M.; Bergman, R. G. J. Am. Chem. Soc.
1981, 103, 3002. (b) Hirata, Y.; Tanaka, M.; Yada, A.; Nakao, Y.;
Hiyama, T. Tetrahedron 2009, 65, 5037.
(20) Takai, K.; Nitta, K.; Fujimura, O.; Utimoto, K. J. Org. Chem.
1989, 54, 4732.
(21) (a) Wan, Z.-K.; Choi, H.-w.; Kang, F.-A.; Nakajima, K.; Demeke,
D.; Kishi, Y. Org. Lett. 2002, 4, 4431. (b) ref 11d.
(22) Liu, S.; Kim, J. T.; Dong, C.-G.; Kishi, Y. Org. Lett. 2009, 11,
4520.
(23) C8,C9-Protecting groups tested included acetonide, anisylidene,
bis-TBS, carbonate, bis-Ac, bis-Bz, and bis-MOM.
(24) (a) Aicher, T. D.; Kishi, Y. Tetrahedron Lett. 1987, 28, 3463. (b)
ref 11d.
(25) Six chiral sulfonamides were tested. All the Cr-catalysts prepared
from them gave the desired 11β-alcohol stereospecifically in the
indicated yields. (S)-Sulfonamide 12 was chosen, because it gave the
best coupling yield.
(26) The coupling yields with 37a and 37b were 59% and 75%,
respectively. We also prepared a Ni-catalyst with n-dodecyloxy
substituents, i.e., X = n-C12H25O in 13, but found that its solubility
was roughly same as that of 13b and the coupling yield with this Ni-
catalyst was 60%.
(27) (a) Namba, K.; Jun, H.-S.; Kishi, Y. J. Am. Chem. Soc. 2004, 126,
7770. (b) Kaburagi, Y.; Kishi, Y. Org. Lett. 2007, 9, 723.
(28) DBU, Triton B(OMe), and tetramethylguanidine were tested.
DBU and tetramethylguanidine established an equilibrium in
isopropanol or ethanol at RT without an elimination of HCl, whereas
caused an elimination of HCl in DMF and MeCN. Triton B(OMe)
caused unknown decomposition of the oxy-Michael products.
(29) Basic ion-exchange resins tested included Amberlite IRA-400,
Amberlite IRA-402, Amberlite IRA-900, Amberlite A-21, Amberlite A-
26, and Amberlite A-27. Acidic ion-exchange resins tested included
Rexyn 101, Amberlite IR-120, Amberlite 15, and Amberlite IRC-86.
(30) Both purchased from Aldrich: polymer-bound guanidine:
#358754; polymer-bound PPTS: #82817.
N. A.; Rutzler, K. C. J. Med. Chem. 1991, 34, 3339. (b) Pettit, G. R.;
̈
Tan, R.; Gao, F.; Williams, M. D.; Doubek, D. L.; Boyd, M. R.;
Schmidt, J. M.; Chapuis, J.-C.; Hamel, E.; Bai, R.; Hooper, J. N. A.;
Tackett, L. P. J. Org. Chem. 1993, 58, 2538. (c) Litaudon, M.; Hart, J.
B.; Blunt, J. W.; Lake, R. J.; Munro, M. H. G. Tetrahedron Lett. 1994,
35, 9435. (d) Litaudon, M.; Hickford, S. J. H.; Lill, R. E.; Lake, R. J.;
Blunt, J. W.; Munro, M. H. G. J. Org. Chem. 1997, 62, 1868.
(e) Hickford, S. J. H.; Blunt, J. W.; Munro, M. H. G. Bioorg. Med.
Chem. 2009, 17, 2199.
(3) For the synthetic work from this group, see: (a) Halichondrin
Bs: Aicher, T. D.; Buszek, K. R.; Fang, F. G.; Forsyth, C. J.; Jung, S.
H.; Kishi, Y.; Matelich, M. C.; Scola, P. M.; Spero, D. M.; Yoon, S. K. J.
Am. Chem. Soc. 1992, 114, 3162. (b) Halichondrin Cs: Yamamoto,
́
A.; Ueda, A.; Bremond, P.; Tiseni, P. S.; Kishi, Y. J. Am. Chem. Soc.
2012, 134, 893. (c) Halichondrin As: Ueda, A.; Yamamoto, A.; Kato,
D.; Kishi, Y. J. Am. Chem. Soc. 2014, 136, 5171 and references cited
therein.
(4) For synthetic efforts by Salomon, Burke, Yonemitsu, Phillips, and
Yadav see: (a) Henderson, J. A.; Jackson, K. L.; Phillips, A. J. Org. Lett.
2007, 9, 5299. Jackson, K. L.; Henderson, J. A.; Motoyoshi, H.;
Phillips, A. J. Angew. Chem., Int. Ed. 2009, 48, 2346 and the references
cited therein. (b) Burke, S. D.; Buchanan, J. L.; Rovin, J. D.
Tetrahedron Lett. 1991, 32, 3961. Lambert, W. T.; Hanson, G. H.;
Benayoud, F.; Burke, S. D. J. Org. Chem. 2005, 70, 9382 and the
references cited therein. (c) Kim, S.; Salomon, R. G. Tetrahedron Lett.
1989, 30, 6279. Cooper, A. J.; Pan, W.; Salomon, R. G. Tetrahedron
Lett. 1993, 34, 8193 and the references cited therein. (d) Horita, K.;
Hachiya, S.; Nagasawa, M.; Hikota, M.; Yonemitsu, O. Synlett 1994,
38. Horita, K.; Nishibe, S.; Yonemitsu, O. Phytochem. Phytopharm.
2000, 386 and the references cited therein. (e) Yadav, J. S.; Reddy, C.
N.; Sabitha, G. Tetrahedron Lett. 2012, 53, 2504.
(5) For reviews on Cr-mediated carbon−carbon bond-forming
reactions, see: (a) Saccomano, N. A. In Comprehensive Organic
Synthesis; Trost, B. M., Fleming, I., Eds.; Pergamon: Oxford, 1991; Vol.
1, p 173. (b) Furstner, A. Chem. Rev. 1999, 99, 991. (c) Wessjohann, L.
̈
A.; Scheid, G. Synthesis 1999, 1. (d) Takai, K.; Nozaki, H. Proc. Japan
Acad. Ser. B 2000, 76, 123. (e) Takai, K. Org. React. 2004, 64, 253.
(e) Hargaden, G. C.; Guiry, P. J. Adv. Synth. Catal. 2007, 349, 2407.
(6) Takai, K.; Kimura, K.; Kuroda, T.; Hiyama, T.; Nozaki, H.
Tetrahedron Lett. 1983, 24, 5281.
(7) (a) Jin, H.; Uenishi, J.-I.; Christ, W. J.; Kishi, Y. J. Am. Chem. Soc.
1986, 108, 5644. (b) Takai, K.; Tagashira, M.; Kuroda, T.; Oshima, K.;
Utimoto, K.; Nozaki, H. J. Am. Chem. Soc. 1986, 108, 6048.
(8) For the work from this laboratory, see: (a) Ref 7a. (b) Ref 21a.
(c) Choi, H.-w.; Nakajima, K.; Demeke, D.; Kang, F.-A.; Jun, H.-S.;
Wan, Z.-K.; Kishi, Y. Org. Lett. 2002, 4, 4435. (d) Ref 11c. (e) Ref
11d. (f) Liu, X.; Henderson, J. A.; Sasaki, T.; Kishi, Y. J. Am. Chem. Soc.
2009, 131, 16678. (g) Ref 18 and references cited therein.
(9) For “masked” vinylogous acyl anion equivalents, see: (a) Cohen,
T.; Bennett, A. D.; Mura, A. J., Jr. J. Org. Chem. 1976, 41, 2506.
(b) Debal, A.; Cuvigny, T.; Larcheveque, M. Tetrahedron Lett. 1977,
18, 3187. (c) Piers, E.; Morton, H. E. J. Org. Chem. 1979, 44, 3437.
(d) Ren, H.; Krasovskiy, A.; Knochel, P. Org. Lett. 2004, 6, 4215.
(10) For a review on related subjects, see: Chinchilla, R.; Najera, C.
Chem. Rev. 2000, 100, 1891.
(31) As ethanol was used as the solvent, an ester exchange was
noticed if the reaction was run over 1 day. However, it did not present
an issue for preparative purpose, as the conversion was usually
complete within 12 h.
(11) (a) Aicher, T. D.; Buszek, K. R.; Fang, F. G.; Forsyth, C. J.; Jung,
S. H.; Kishi, Y.; Scola, P. M. Tetrahedron Lett. 1992, 33, 1549.
(b) Chen, C.; Tagami, K.; Kishi, Y. J. Org. Chem. 1995, 60, 5386.
(c) Namba, K.; Kishi, Y. Org. Lett. 2004, 6, 5031. (d) Guo, H.; Dong,
(32) See Supporting Information.
G
J. Am. Chem. Soc. XXXX, XXX, XXX−XXX