J IRAN CHEM SOC
13. M.G. LaPorte, Z. Wang, R. Colombo, A. Garzan, V.A. Peshkov,
M. Liang, P.A. Johnston, M.E. Schurdak, M. Sen, D.P. Camarco,
Y. Hua, Bioorg. Med. Chem. Lett. 26, 3581–3588 (2016)
14. J.L. Wang, D. Liu, Z.J. Zheng, S. Shan, X. Han, S.M. Sriniva-
sula, C.M. Croce, E.S., Z. Huang. Proc. Natl. Acad. Sci. 97,
7124–7129 (2009)
15. B.P. Bandgar, H.V. Chavan, L.K. Adsul, V.N. Thakare, S.N.
Shringare, R. Shaikh, R.N. Gacche, Bioorg. Med. Chem. Lett.
23, 912–916 (2013)
bis(pyrazol-5-ols) and dihydropyrano[2,3-c]pyrazoles with
other results reported in the literature, as shown in Table 5.
Compounds including pyrazol core have extensively been
used in the synthesis of drugs and pharmaceuticals. Thus,
the elimination of residual metal species plays a pivotal
role when a metal-containing catalyst was applied [12]. So,
this method, compared to the existing ones, uses aspirin
as an effcient, non-toxic, inexpensive, and commercially
available organocatalyst along with merits including high
yields and short reaction time.
16. K.M. Kasiotis, E.N. Tzanetou, S.A. Haroutounian, Front. Chem.
2, 1–7 (2014)
17. M.J. Genin, C. Biles, B.J. Keiser, S.M. Poppe, S.M. Swaney,
W.G. Tarpley, Y. Yagi, D.L. Romero, J. Med. Chem. 43, 1034–
1040 (2000)
18. F. Abrigach, R. Touzani, Med. Chem. (Los Angeles) 6, 292–298
(2016)
19. K. Sujatha, G. Shanthi, N.P. Selvam, S. Manoharan, P.T. Peru-
mal, M. Rajendran, Bioorg. Med. Chem. Lett. 19, 4501–4503
(2009)
The reusability of aspirin was examined in the synthesis
of 4b as an example. It was observed that the yield of prod-
uct reduced in the 3rd and 4th runs.
20. H. Kashtoh, M.T. Muhammad, J.J. Khan, S. Rasheed, A. Khan,
S. Perveen, K. Javaid, K.M. Khan, M.I. Choudhary, Bioorg.
Chem. 65, 61–72 (2016)
Conclusions
21. A.V. Stachulski, N.G. Berry, A.C.L. Low, S.L. Moores, E. Row,
D.C. Warhurst, I.S. Adagu, J.F. Rossignol, J. Med. Chem. 49,
1450–1454 (2006)
22. E. Soleimani, S. Ghorbani, M. Taran, A. Sarvary, C. R. Chim. 15,
955–961 (2012)
In compendium, we expanded an effcient strategy for
one-pot synthesis of biologically 4,4′-(arylmethylene)
bis(1H-pyrazol-5-ol), dihydropyrano[2,3-c]pyrazole, and
spiropyranopyrazole derivatives in the presence of aspirin
as a commercially available, and eco-compatibility catalyst
under environmental benign conditions. Good to excellent
yields, simplicity of operation, comfortable purifcation,
and high atom-economy are the noteworthy advantages of
the present method.
23. J. Safaei-Ghomi, B. Khojastehbakht-Koopaei, H. Shahbazi-
Alavi, RSC Adv. 4, 46106–46113 (2014)
24. W. Wang, S.X. Wang, X.Y. Qin, J.T. Li, Synth. Commun. 35,
1263–1269 (2005)
25. N.G. Khaligh, S.B.A. Hamid, S.J. Titinchi, Chin. Chem. Lett. 27,
104–108 (2016)
26. M.A. Zolfgol, R. Ayazi-Nasrabadi, S. Baghery, V. Khakyzadeh,
S. Azizian, J. Mol. Catal. A-Chem. 418–419, 54–67 (2016)
27. D. Azarifar, Y. Abbasi, Synth. Commun. 46, 745–758 (2016)
28. Y.A. Tayade, S.A. Padvi, Y.B. Wagh, D.S. Dalal, Tetrahedron
Lett. 56, 2441–2447 (2015)
Acknowledgements We gratefully appreciate the fnancial support
from the Research Council of University of Sistan and Baluchestan.
29. R.H. Vekariya, K.D. Patel, H.D. Patel, Res. Chem. Intermed. 42,
7559–7579 (2016)
30. C.F. Zhou, J.J. Li, W.K. Su, Chin. Chem. Lett. 27, 1686–1690
(2016)
References
31. A.K. Imene, F. Amina, L. Oumeima, B. Raouf, B. Boudjemaa,
D. Abdelmadjid, Lett. Org. Chem. 13, 85–91 (2016)
32. H. Mecadon, M.R. Rohman, M. Rajbangshi, B. Myrboh, Tetra-
hedron Lett. 52, 2523–2525 (2011)
33. A. Siddekha, A. Nizam, M.A. Pasha, Spectrochim. Acta A. 81,
431–440 (2011)
1. S. Karamthulla, S. Pal, M.N. Khan, L.H. Choudhury, RSC Adv.
4, 37889–37899 (2014)
2. P.T. Anastas, T.C. Williamson (eds.), Green Chemistry: Frontiers
in Benign Chemical Syntheses and Processes (Oxford University
Press, Oxford, 1998)
34. A.R. Hajipour, M. Karimzadeh, H. Tavallaei, J. Iran. Chem. Soc.
3. G.M. Ziarani, S. Faramarzi, N. Lashgari, A. Badiei, J. Iran.
12, 987–991 (2015)
Chem. Soc. 11, 701–709 (2014)
35. K. Ablajan, W. Liju, Y. Kelimu, F. Jun, Mol. Divers. 17, 693–700
(2013)
4. P.T. Anastas, M.M. Kirchhoff, Acc. Chem. Res. 35, 686–694
(2002)
36. D.W.C. MacMillan, Nature 455, 304–308 (2008)
37. C.M. Ulrich, J. Bigler, J.D. Potter, Nat. Rev. Cancer 6, 130–140
(2006)
38. C. Cena, M.L. Lolli, L. Lazzarato, E. Guaita, G. Morini, G.
Coruzzi, S.P. McElroy, I.L. Megson, R. Fruttero, A. Gasco, J.
Med. Chem. 46, 747–754 (2003)
39. A. Undas, K.E. Brummel-Ziedins, K.G. Mann, Blood 109,
2285–2592 (2007)
40. X. Shi, M. Ding, Z. Dong, F. Chen, J. Ye, S. Wan, S.S. Leonard,
V. Castronova, V. Vallyathan, Mol. Cell. Biochem. 199, 93–102
(1999)
5. E. Ruijter, R. Scheffelaar, R.V.A. Orru, Angew. Chem. Int. Ed.
50, 6234–6246 (2011)
6. J.L. Tucker, Org. Process Res. Dev. 10, 315–319 (2006)
7. O.A. Attanasi, D. Spinelli, Soc. Chim. Italiana, Roma. 4, 105–
137 (2000)
8. M.M.F. Ismail, Y.A. Ammar, H.S.A. EI-Zahaby, S.I. Eisa, S.E.
Barakat, Arch. Pharm. Chem. Life Sci. 340, 476–479 (2007)
9. S.P. Prajapati, D.P. Patel, P.S. Patel, J. Chem. Pharm. Res. 4,
2652–2655 (2012)
10. Y. Liu, G. He, C. Kai, Y. Li, H. Zhu, J. Heterocycl. Chem. 19,
1370–1375 (2012)
41. T. Roberts, F. Shokraneh, S. Nur, Cochrane Libr (2016).
11. G. Mariappan, B.P. Saha, L. Sutharson, A. Singh, S. Garg, L.
Pandey, D. Kumar, Saudi Pharm. J. 19, 115–122 (2011)
12. C.E. Rosiere, M.I. Grossman, Science 131, 651 (1951)
1 3