Journal of the American Chemical Society
Page 6 of 7
Derivatization at C-3 of Indazoles. J. Org. Chem. 2006, 71, 5392–
5395.
(6) A rare example of direct C3-alkylation using indazoles as
nucleophiles: Campetalla, S.; Palmieri, A.; Petrini, M. Synthesis of
3-(Tosylalkyl)indazoles and their Desulfonylation Reactions-A New
Entry to 3-Substituted Indazoles by an Unprecedented Friedel-Crafts
Process. Eur. J. Org. Chem. 2009, 3184–3188.
(7) Ye, Y.; Kim, S.-T.; Jeong, J.; Baik, M.-H.; Buchwald, S. L.
CuH-Catalyzed Enantioselective Alkylation of Indole Derivatives
with Ligand-Controlled Regiodivergence. J. Am. Chem. Soc. 2019,
141, 3901–3909.
(8) (a) Chen, J. B.; Jia, Y. X. Recent Progress in Transition-Metal-
Catalyzed Enantioselective Indole Functionalizations. Org. Biomol.
Chem. 2017, 15, 3550−3567. (b) Bandini, M.; Eichholzer, A.
Catalytic Functionalization of Indoles in a New Dimension. Angew.
Chem., Int. Ed. 2009, 48, 9608−9644.
(9) (a) Lakhdar, S.; Westermaier, M.; Terrier, F.; Goumont, R.;
Boubaker, T.; Ofial, A. R.; Mayr, H. Nucleophilic Reactivities of
Indoles. J. Org. Chem. 2006, 71, 9088−9095. (b) Otero, N.;
Mandado, M.; Mosquera, R. A. Nucleophilicity of Indole
Derivatives: Activating and Deactivating Effects Based on Proton
Affinities and Electron Density Properties. J. Phys. Chem. A 2007,
111, 5557−5562.
AUTHOR INFORMATION
Corresponding Author
1
2
3
4
5
6
7
8
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENT
9
The authors thank Solvias AG for donations of ligands
used in this project. We are grateful to the National
Institutes of Health (R35-GM122483, R35-GM128779).
The content is solely the responsibility of the authors and
does not necessarily represent the official views of the
National Institute of Health. We thank Yujing Zhou, Drs.
Richard Liu, Scott McCann, and Christine Nguyen for their
advice on the preparation of this manuscript. We
acknowledge Drs. Peter Müller (MIT) and Charlene Tsay
(MIT) for X-ray crystallographic analysis. We thank the
National Institutes of Health for a supplemental grant for
the purchase of supercritical fluid chromatography (SFC)
equipment (GM058160-17S1). I.K. is grateful to the
University of Pittsburgh and the Pittsburgh Quantum
Institute for fellowships. DFT calculations were performed
at the Center for Research Computing at the University of
Pittsburgh and the Extreme Science and Engineering
Discovery Environment (XSEDE) supported by the NSF.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(10) Seebach, D. Methods of Reactivity Umpolung. Angew. Chem.
Int. Ed. Engl. 1979, 18, 239–258.
(11) For asymmetric allylation using allyl copper species, see: (a)
Holmes, M.; Schwartz, L. A.; Krische, M. J. Intermolecular Metal-
Catalyzed Reductive Coupling of Dienes, Allenes, and Enynes with
Carbonyl Compounds and Imines. Chem. Rev. 2018, 118, 6026–
6052. (b) Liu, R. Y.; Yang, Y.; Buchwald, S. L. Regiodivergent and
Diastereoselective CuH-Catalyzed Allylation of Imines with
Terminal Allenes. Angew. Chem. Int. Ed. 2016, 55, 14077–14080. (c)
Tsai, E.; Liu, R. Y.; Yang, Y.; Buchwald, S. L. A Regio- and
Enantioselective CuH-Catalyzed Ketone Allylation with Terminal
Allenes. J. Am. Chem. Soc. 2018, 140, 2007–2011.
REFERENCES
(1) (a) Vitaku, E.; Smith, D. T.; Njardarson, J. T. Analysis of the
Structural Diversity, Substitution Patterns, and Frequency of
Nitrogen Heterocycles among U.S. FDA Approved Pharmaceuticals.
J. Med. Chem., 2014, 57, 10257–10274. (b) Lamberth, C.; Dinges, J.
Bioactive Heterocyclic Compound Classes: Pharmaceuticals and
Agrochemicals; Wiley-VCH: Weinheim, Germany, 2012.
(2) Cerecetto, H.; Gerpe, A.; González, M.; Arán, V. J.; de Ocáriz,
C. O. Pharmacological Properties of Indazole Derivatives: Recent
Developments. Mini-Reviews in Medicinal Chemistry 2005, 5, 869–
878.
(3) (a) Brown, N. Bioisosterism in Medicinal Chemistry; Wiley-
VCH: Weinheim, Germany, 2012. (b) Ainsworth, C. Indazole
Analog of Tryptamine: A New Synthesis of Indazoles. J. Am. Chem.
Soc. 1957, 79, 5242–5245. (c) Ainsworth, C. The Indazole Analog of
Serotonin. J. Am. Chem. Soc. 1957, 79, 5245–5247.
(4) Reviews on indazole synthesis: (a) Schmidt, A.; Beutler, A.;
Snovydovych, B. Recent Advances in the Chemistry of Indazoles.
Eur. J. Org. Chem. 2008, 4073–4095. (b) Zhang, S.-G.; Liang, C.-G.;
Zhang, W.-H. Recent Advances in Indazole-Containing Derivatives:
Synthesis and Biological Perspective. Molecules 2018, 23, 2783–
2824.
(5) Examples of indazoles alkylation with N1/N2 regioselectivity:
(a) Hunt, K. W.; Moreno, D. A.; Suiter, N.; Clark, C. T.; Kim, G.
Selective Synthesis of 1-Functionalized-Alkyl-1H-Indazoles. Org.
Lett. 2009, 11, 5054–5057. (b) Lin, M.-H.; Liu, H.-J.; Lin, W.-C.;
Kuo, C.-K.; Chuang, T.-H. Regioselective Synthesis of 2H-Indazoles
through Ga/Al- and Al-Mediated Direct Alkylation Reactions of
Indazoles. Org. Biomol. Chem. 2015, 13, 11376–11381. (c) Haydl,
A. M.; Breit, B. Regio- and Enantioselective Synthesis of N-
Substituted Pyrazoles by Rhodium-Catalyzed Asymmetric Addition
to Allenes. Angew. Chem., Int. Ed. 2015, 54, 7149–7153. (d) Slade,
D. J.; Pelz, N. F.; Bodnar, W.; Lampe, J. W.; Watson, P. S. Indazoles:
Regioselective Protection and Subsequent Amine Coupling
Reactions. J. Org. Chem. 2009, 74, 6331–6334. (e) Luo, G.; Chen,
L.; Dubowchik, G. Regioselective Protection at N-2 and
(12) (a) Kieslich, K.; Koch, H.-J.; Kosmol, H.; Rufer, C.;
Schröder, E.; Vössing, R. Totalsynthese von Natürlichem
Östradiolmethyläther. Tetrahedron Lett. 1966, 7, 2321–2330. (b)
Fuji, K. Asymmetric Creation of Quaternary Carbon Centers. Chem.
Rev. 1993, 93, 2037–2066. (c) Corey, E. J.; Guzman-Perez, A. The
Catalytic Enantioselective Construction of Molecules with
Quaternary Carbon Stereocenters. Angew. Chem. Int. Ed. 1998, 37,
388–401. (d) Christoffers, J.; Mann, A. Enantioselective
Construction of Quaternary Stereocenters. Angew. Chem. Int. Ed.
2001, 40, 4591–4597. (e) Denissova, I.; Barriault, L. Stereoselective
Formation of Quaternary Carbon Centers and Related Functions.
Tetrahedron 2003, 59, 10105–10146. (f) Douglas, C. J.; Overman, L.
E. Catalytic Asymmetric Synthesis of All-Carbon Quaternary
Stereocenters. Proc. Natl. Acad. Sci. U. S. A. 2004, 101, 5363–5367.
(g) Trost, B. M; Jiang, C. Catalytic Enantioselective Construction of
All-Carbon Quaternary Stereocenters. Synthesis 2006, 369–396. (h)
Das, J.; Marek, I. Enantioselective Synthesis of All-Carbon
Quaternary Stereogenic Centers in Acyclic Systems. Chem.
Commun. 2011, 47, 4593–4623. (i) Quasdorf, K. W.; Overman, L. E.
Catalytic Enantioselective Synthesis of Quaternary Carbon
Stereocentres. Nature 2014, 516, 181–191. (j) Gibian, H.; Marek, I.;
Minko, Y.; Pasco, M.; Mejuch, T.; Gilboa, N.; Chechik, H.; Das, J.
P. All-Carbon Quaternary Stereogenic Centers in Acyclic Systems
through the Creation of Several C–C Bonds per Chemical Step. J.
Am. Chem. Soc. 2014, 136, 2682–2694. (k) Liang, T.; Rivas, F. All-
Carbon Quaternary Centers in Natural Products and Medicinal
Chemistry: Recent Advances. Tetrahedron 2016, 72, 6729–6777. (l)
Feng, J.; Holmes, M.; Krische, M. J. Acyclic Quaternary Carbon
Stereocenters via Enantioselective Transition Metal Catalysis. Chem.
Rev. 2017, 117, 12564–12580.
(13) (a) Kazzouli, S. E.; Guillaumet, G. Functionalization of
Indazoles by Means of Transition Metal-Catalyzed Cross-Coupling
Reactions. Tetrahedron 2016, 72, 6711–6727. (b) Antilla, J. C.;
Baskin, J. M.; Barder, T. E.; Buchwald, S. L. Copper-Diamine-
Catalyzed N-Arylation of Pyrroles, Pyrazoles, Indazoles, Imidazoles,
and Triazoles. J. Org. Chem. 2004, 69, 5578–5587.
ACS Paragon Plus Environment