at −78 ◦C. After being stirred for 10 min, the reaction mixture was
allowed to warm to room temperature and the volatile materials
were removed in vacuo. The residue was extracted with hexane and
evaporated in vacuo. Recrystallisation from hexane gave 48 mg of
unique reflections (Rint = 0.065), R1 = 0.031 (I > 2r(I)), Rw =
0.038 (all data).
CCDC reference numbers 272085–272087.
For crystallographic data in CIF or other electronic format see
DOI: 10.1039/b510432g
◦
1
6 (yield: 16%), mp 312–315 C; 31P{ H} NMR (162 MHz, CDCl3)
1
d 147.0; H NMR (400 MHz, CDCl3) d 7.33 (4H, s, arom), 1.57
(36H, s, o-tBu), 1.28 (18H, s, p-tBu), 0.22 (4H, m, CHH), 0.11
1
(4H, m, CHH), −0.31 (2H, m, CH); 13C{ H} NMR (101 MHz,
Acknowledgements
CDCl3) d 181.3 (dd, 1JPC = 19.8 Hz, 2JPC = 5.4 Hz, P C), 162.1
=
(dd, 2JPC = 7.8 Hz, 3JPC = 5.8 Hz, C C), 155.9 (s, o-arom), 149.9
This work was supported in part by Grants-in-Aid for Scientific
Research (No. 13303039 and 14044012) from the Ministry of Edu-
cation, Culture, Sports, Science andTechnologyof Japan. M. Frey-
tag is grateful to the Japan Society for the Promotion of Science
for Postdoctoral Fellowships for Foreign Researchers.
=
(s, p-arom), 136.5 (dd, 1JPC = 29.6 Hz, 4JPC = 25.4 Hz, ipso-arom),
121.3 (s, m-arom), 38.5 (s, o-CMe3), 35.3 (s, p-CMe3), 33.5 (pt,
(4JPC + 7JPC)/2 = 3.5 Hz, o-CMe3), 31.7 (s, p-CMe3), 9.8 (s, CH2),
8.4 (s, CH); HRMS: calc. for C46H68P2 + Na: 705.4688; found:
705.4690.
References
Preparation of 7
1 (a) S. Patai, The Chemistry of Ketenes, Allenes and Related Compounds,
Wiley, New York, 1980; (b) S. R. Landor, The Chemistry of the Allenes,
Academic Press, London, 1982; (c) H. F. Schuster and G. M. Coppola,
Allenes in Organic Synthesis, Wiley, New York, 1984; (d) S. Ma, Chem.
Rev., 2005, 105, 2829.
2 (a) M. Regitz and O. J. Scherer, Multiple Bonds and Low Coordination in
Phosphorus Chemistry, Georg Thieme Verlag, Stuttgart, 1990; (b) K. B.
Dillon, F. Mathey and J. F. Nixon, Phosphorus: The Carbon Copy, John
Wiley & Sons, Chichester, 1998; (c) M. Yoshifuji, J. Chem. Soc., Dalton
Trans., 1998, 3343.
3 S. Ito, S. Sekiguchi and M. Yoshifuji, Eur. J. Org. Chem., 2003, 4838.
4 S. Ito, S. Sekiguchi and M. Yoshifuji, J. Org. Chem., 2004, 69, 4181.
5 (a) F. Mathey, Angew. Chem., Int. Ed., 2003, 42, 1578; (b) L. Weber,
Angew. Chem., Int. Ed., 2002, 41, 563; (c) M. Yoshifuji, J. Synth. Org.
Chem. Jpn. (Yuki Gosei Kagaku Kyokai-Shi), 2003, 61, 1116; (d) F.
Ozawa and M. Yoshifuji, C. R. Chim., 2004, 7, 747.
6 (a) K. Toyota, K. Abe, K. Horikawa and M. Yoshifuji, Bull. Chem. Soc.
Jpn., 2004, 77, 1377; (b) A. Nakamura, S. Kawasaki, K. Toyota and M.
Yoshifuji, Chem. Lett., 2004, 33, 1570; (c) R. Appel, V. Winkhaus and
F. Knoch, Chem. Ber., 1987, 120, 243; (d) M. Yoshifuji, K. Toyota, M.
Murayama, H. Yoshimura, A. Okamoto, K. Hirotsu and S. Nagase,
Chem. Lett., 1990, 2195; (e) G. Ma¨rkl, P. Kreitmeier, H. No¨th and K.
Polborn, Angew. Chem., Int. Ed. Engl., 1990, 29, 927.
A mixture of 25 mg (0.036 mmol) of 6 and 23.5 mg (0.073 mmol)
of (tht)AuCl in 8 mL of CH2Cl2 was stirred for 1 h, then the
volatile materials were removed in vacuo. Recrystallisation from a
mixture of CH2Cl2 and hexane gave 16 mg of 7 (yield: 39%). The
reaction and the recrystallisation were carried out in the dark, mp
◦
238–239 C; 31P{ H} NMR (162 MHz, CDCl3) d 113.7; 1H NMR
(400 MHz, CDCl3) d 7.48 (4H, s, arom), 1.71 (36H, s, o-tBu), 1.28
(18H, s, p-tBu), 0.39 (4H, m, CHH), 0.27 (4H, m, CHH), −0.37
1
1
(2H, m, CH); 13C{ H} NMR (101 MHz, CDCl3) d 170.3 (dd,
1
2
JPC = 38.2 Hz, 2JPC = 26.5 Hz, P C), 163.8 (d, JPC = 26.1 Hz,
=
3
=
C C), 158.7 (s, o-arom), 154.7 (s, p-arom), 123.2 (pt, ( JPC
+
6JPC)/2 = 4.9 Hz, m-arom), 39.3 (s, o-CMe3), 35.7 (s, p-CMe3), 34.6
(s, o-CMe3), 31.5 (s, p-CMe3), 10.8 (pt, (4JPC + 5JPC)/2 = 1.7 Hz,
CH2), 7.1 (s, CH) (ipso-arom could not be determined); HRMS:
calc. for C46H68Au2Cl2P2 + Na: 1169.3397; found: 1169.3403.
X-Ray crystallography
7 S. Ito, S. Sekiguchi, M. Freytag and M. Yoshifuji, Bull. Chem. Soc.
Jpn., 2005, 78, 1142.
8 S. Kimura, S. Ito, M. Yoshifuji and T. Veszpre´mi, J. Org. Chem., 2003,
68, 6820.
A Rigaku RAXIS-IV imaging plate detector with graphite-
˚
monochromated Mo-Ka radiation (k = 0.71070 A) was used.
The structure was solved by direct methods (SIR92),16 expanded
using Fourier techniques (DIRDIF94),17 and then refined by full-
matrix least squares method. The data were corrected for Lorentz
polarization effect. Structure solution, refinement, and graphical
representation were carried out using the teXsan package.18
9 Six independent molecules were found in the crystalline state: mono-
clinic, space group P21/n (no. 14), a = 28.672(3), b = 16.873(2), c =
◦
3
˚
˚
29.103(3) A, b = 109.763(8) , V = 13250(2) A . Diffraction data were
insufficient to determine the positions of all atoms.
10 T. Haumann, R. Boese, S. Kozhushkov, K. Rauch and A. de Meijere,
Liebigs Ann./Recueil, 1997, 2047.
=
=
11 Reaction of Mes*P
C CH–Ph with 0.5 equiv. of butyllithium gave
Crystal data. For 4: C24H38BrOP, M = 453.44, triclinic, space
2,6-diphenyl-1,4-bis(2,4,6-tri-tert-butylphenyl)-1,4-diphosphafulvene
(1) in a moderate yield: S. Ito, M. Freytag and M. Yoshifuji, Sci. Rep.
Tohoku Univ., Ser. I, 2004, 81, 17.
¯
˚
group P1 (no. 2), a = 9.9117(5), b = 13.2871(5), c = 9.7067(5) A,
◦
3
˚
a = 105.593(2), b = 96.440(4), c = 90.888(3) , V = 1222.1(1) A ,
12 (a) D. Tamarkin, D. Benny and M. Rabinovitz, Angew. Chem., Int. Ed.
Engl., 1984, 23, 642; (b) D. Tamarkin and M. Rabinovitz, J. Org. Chem.,
1987, 52, 3472.
13 (a) V. Usieli, R. Victor and S. Sarel, Tetrahedron Lett., 1976, 2705; (b) I.
Bar, J. Bernstein and A. Christensen, Tetrahedron, 1977, 33, 3177.
14 P. G. Jones, Acta Crystallogr., Sect. B, 1980, 36, 2775.
15 (a) F. Scherbaum, A. Grohmann, B. Huber, C. Kru¨ger and H.
Schmidbaur, Angew. Chem., Int. Ed. Engl., 1988, 27, 1544; (b) P.
Pyykko¨, Angew. Chem., Int. Ed., 2004, 43, 4412.
16 A. Altomare, M. C. Burla, M. Camalli, M. Cascarano, C. Giacovazzo,
A. Guagliardi and G. Polidori, J. Appl. Crystallogr., 1994, 27, 435.
17 P. T. Beurskens, G. Admiraal, G. Beurskens, W. P. Bosman, R. de
Gelder, R. Israel and J. M. M. Smits, The DIRDIF94 program system,
Technical Report of the Crystallography Laboratory, University of
Nijmegen, The Netherlands, 1994.
Z = 2, Dc = 1.232 g cm−3, l(Mo-Ka) = 1.763 mm−1, T = 133 K,
9728 observed reflections, 5101 unique reflections (Rint = 0.024),
R1 = 0.051 (I > 2r(I)), Rw = 0.078 (all data).
For 6: C46H68P2, M = 682.99, monoclinic, space group P21/n
˚
(no. 14), a = 15.9000(4), b = 24.1687(7), c = 11.3333(5) A, b =
◦
3
−3
˚
89.711(1) , V = 4355.1(3) A , Z = 4, Dc = 1.042 g cm , l(Mo-
Ka) = 0.128 mm−1, T = 140 K, 35515 observed reflections, 9885
unique reflections (Rint = 0.084), R1 = 0.097 (I > 2r(I)), Rw
=
0.108 (all data).
For 7: C46H68Au2Cl2P2, M = 1147.83, orthorhombic, space
group Pna21 (no. 33), a = 19.4009(5), b = 15.0454(4), c =
3
−3
˚
˚
15.8448(7) A, V = 4625.0(3) A , Z = 4, Dc = 1.648 g cm , l(Mo-
18 Crystal Structure Analysis Package, Molecular Structure Corporation,
Ka) = 6.573 mm−1, T = 133 K, 36160 observed reflections, 5323
The Woodlands, TX, 1985 and 1999.
This journal is
The Royal Society of Chemistry 2006
Dalton Trans., 2006, 710–713 | 713
©