γ-amino alcohols resulting from their reduction are also very
useful molecules for their biological properties and their
application as ligands in asymmetric syntheses.3 Moreover, the
introduction of fluorine atoms into a molecule often produces
significant changes in its physical, chemical, and biological
properties.4 In particular, fluorinated amino acids and amino
alcohols have proven to be of great interest.5 In this context,
the design of new synthetic methodologies for the asymmetric
synthesis of fluorinated â-amino acids, â-amino ketones, and
γ-amino alcohols is of considerable current interest. Several
synthetic approaches of chiral â-trifluoromethyl â-amino acids
have been reported in the literature,6 but the preparation of chiral
â-trifluoromethyl-â-amino ketones and γ-amino alcohols is less
documented.7 Among the various methods involving nucleo-
philic additions on trifluoromethyl imines or related acetals and
Convenient Asymmetric Synthesis of
â-Trifluoromethyl-â-amino Acid, â-Amino
Ketones, and γ-Amino Alcohols via Reformatsky
and Mannich-Type Reactions from
2-Trifluoromethyl-1,3-oxazolidines
Florent Huguenot† and Thierry Brigaud*,‡
Laboratoire “Re´actions Se´lectiVes et Applications”, UMR CNRS
6519, UniVersite´ de Reims-Champagne-Ardenne, Faculte´ des
Sciences, BP 1039, 51687 Reims Cedex 2, France, and
Laboratoire “Synthe`se Organique Se´lectiVe et Chimie
Organome´tallique” (SOSCO), UMR CNRS 8123, UniVersite´ de
Cergy-Pontoise, 5, Mail Gay-Lussac - NeuVille sur Oise - 95031
Cergy-Pontoise Cedex, France
(3) (a) Kochi, T.; Tang, T. P.; Ellman, J. A. J. Am. Chem. Soc. 2003,
125, 11276-11282 and references therein. (b) Enders, D.; Moser, M.;
Geibel, G.; Laufer, M. C. Synthesis 2004, 2040-2046 and references therein.
(4) (a) Hiyama, T. In Organofluorine Compounds, Chemistry and
applications; Yamamoto, H., Ed.; Springer-Verlag: Berlin and Heidelberg,
Germany, 2000. (b) Organofluorine Chemistry, Principles and Commercial
Applications; Banks, R. E., Smart, B. E., Tatlow, J. C., Eds.; Plenum: New
York, 1994. (c) Biomedical Frontiers of Fluorine Chemistry; Ojima, I.,
McCarthy, J. R., Welch, J. T., Eds.; American Chemical Society: Wash-
ington, DC, 1996. (d) Smart, B. E. J. Fluorine Chem. 2001, 109, 3-11. (e)
O’Hagan, D.; Rzepa, H. S. Chem. Commun. 1997, 645-652. (f) Schlosser,
M. Angew. Chem., Int. Ed. 1998, 110, 1496-1513. (g) ChemBioChem 2004,
5, 557-726 (special issue).
ReceiVed NoVember 9, 2005
(5) (a) Qiu, X.-L.; Meng, W.-D.; Qing, F.-L. Tetrahedron 2004, 60,
6711-6745 and references therein. (b) Sutherland, A.; Wilis, C. L. Nat.
Prod. Rep. 2000, 17, 621-631 and references therein. (c) Kukhar, V. P.;
Soloshonok, V. A. Fluorine Containing Amino Acids: Synthesis and
Properties; Wiley: New York, 1995. (d) Enantiocontrolled Synthesis of
Fluoro-Organic Compounds; Soloshonok, V. A., Ed.; Wiley: Chichester,
U.K., 1999. (e) Zanda, M. New J. Chem. 2004, 28, 1401-1411. (f) Molteni,
M.; Pesenti, C.; Sani, M.; Volonterio, A.; Zanda, M. J. Fluorine Chem.
2004, 125, 1335-1743. (g) Kuznetsova, L.; Ungureanu, I. M.; Pepe, A.;
Zanardi, I.; Wu, X.; Ojima, I. J. Fluorine Chem. 2004, 125, 487-500. (h)
Be´gue´, J.-P.; Bonnet-Delpon, D. Trifluoromethylated Amino Alcohols: New
Synthetic Approaches and Medicinal Targets. In Biomedical Frontiers of
Fluorine Chemistry; Ojima, I., McCarthy, J. R., Welch, J. T., Eds.; American
Chemical Society: Washington, DC, 1996; pp 59-72. (i) Bravo, P.;
Crucianelli, M.; Ono, T.; Zanda, M. J. Fluorine Chem. 1999, 112, 27-49.
(6) (a) Funabiki, K.; Nagamori, M.; Matsui, M. J. Fluorine Chem. 2004,
125, 1347-1350. (b) Jiang, Z.-X.; Qing, F.-L. J. Org. Chem. 2004, 69,
5486-5489. (c) Lazzaro, F.; Crucianelli, M.; De Angelis, F.; Frigerio, M.;
Malpezzi, L.; Volonterio, A.; Zanda, M. Tetrahedron: Asymmetry 2004,
15, 889-893. (d) Fustero, S.; Pina, B.; Salavert, E.; Navarro, A.; Ram´ırez
de Arellano, M. C.; Fuentes, A. S. J. Org. Chem. 2002, 67, 4667-4679.
(e) Fustero, S.; Salavert, E.; Pina, B.; Ram´ırez de Arellano, C.; Fuentes, A.
S.; Asensio, A. Tetrahedron 2001, 57, 6475-6486. (f) Volonterio, A.;
Bellosta, S.; Bravo, P.; Canavesi, M.; Corradi, E.; Meille, S. V.; Monetti,
M.; Moussier, N.; Zanda, M. Eur. J. Org. Chem. 2002, 428-438. (g) Bravo,
P.; Fustero, S.; Guidetti, M.; Volonterio, A.; Zanda, M. J. Org. Chem. 1999,
64, 8731-8735. (h) Davoli, P.; Forni, A.; Franciosi, C.; Moretti, I.; Prati,
F. Tetrahedron: Asymmetry 1999, 10, 2361-2371. (i) Abouabdellah, A.;
Be´gue´, J.-P.; Bonnet-Delpon, D.; Nga, T. T. T. J. Org. Chem. 1997, 62,
8826-8833. (j) Ojima, I.; Slater, J. C. Chirality 1997, 9, 487-494. (k)
Ojima, I.; Slater, J. C.; Pera, P.; Veith, J. M.; Abouabdellah, A.; Be´gue´,
J.-P.; Bernacki, R. J. Bioorg. Med. Chem. Lett. 1997, 7, 133-138. (l)
Soloshonok, V. A.; Soloshonok, I. V.; Kukhar, V. P.; Svedas, V. K. J.
Org. Chem. 1998, 63, 1878-1884. (m) Soloshonok, V. A.; Ono, T.;
Soloshonok, I. V. J. Org. Chem. 1997, 62, 7538-7539. (n) Soloshonok,
V. A.; Kukhar, V. P. Tetrahedron 1996, 52, 6953-6964. (o) Soloshonok,
V. A.; Kirilenko, A. G.; Fokina, N. A.; Kukhar, V. P.; Galushko, S. V.;
Svedas, V. K.; Resnati, G. Tetrahedron: Asymmetry 1994, 5, 1225-1228.
(p) Soloshonok, V. A.; Kirilenko, A. G.; Fokina, N. A.; Shishkina, I. P.;
Galushko, S. V.; Kukhar, V. P.; Svedas, V. K.; Kozlova, E. V. Tetrahe-
dron: Asymmetry 1994, 5, 1119-1126. (q) Soloshonok, V. A.; Kirilenko,
A. G.; Galushko, S. V.; Kukhar, V. P Tetrahedron Lett. 1994, 35, 5063-
5064. (r) Soloshonok, V. A.; Avilov, D. V.; Kukhar, V. P.; Van Meervelt,
L.; Mischenko, N. Tetrahedron Lett. 1997, 38, 4671-4674.
The stereoselective syntheses of â-trifluoromethyl-â-amino
ester, â lactams, and â-amino ketones starting from an
oxazolidine derived from trifluoroacetaldehyde hemiacetal
and (R)-phenylglycinol are reported. The Mannich-type
reaction involving a chiral fluorinated iminium ion occurred
in a good yield and with a higher stereoselectivity (dr up to
96:4) than that of the Reformatsky-type reaction. This
straightforward strategy was applied to the short syntheses
of (R)-3-amino-4,4,4-trifluorobutanoic acid, a series of novel
enantiopure unprotected fluorinated â-amino ketones, and
their corresponding γ-amino alcohols.
Introduction
In the field of amino acid chemistry, â-amino acids have
proven to be of great interest because of their unique biological
properties.1 Likewise, â-amino carbonyl compounds, generally
obtained by Mannich-type reactions, are very important com-
pounds as biologically active molecules.2 The corresponding
* To whom correspondence should be addressed. Phone: + 33/(0)134257066.
Fax: + 33/(0)134257071.
† Universite´ de Reims-Champagne-Ardenne.
‡ Universite´ de Cergy-Pontoise.
(1) (a) Liu, M.; Sibi, M. P. Tetrahedron 2002, 58, 7991-8035. (b) Cheng,
R. P.; Gellman, S. H.; DeGrado, W. F. Chem. ReV. 2001, 101, 3219-3232.
(c) Seebach, D.; Beck, A. K.; Bierbaum, D. J. Chem. BiodiVersity 2004, 1,
1111-1239. (d) Seebach, D.; Kimmerlin, T.; Sebesta, R.; Campo, M. A.;
Beck, A. K. Tetrahedron 2004, 60, 7455-7506.
(2) Arend, M.; Westermann, B.; Risch, N. Angew. Chem., Int. Ed. 1998,
37, 1044-1070.
10.1021/jo052323p CCC: $33.50 © 2006 American Chemical Society
Published on Web 02/02/2006
J. Org. Chem. 2006, 71, 2159-2162
2159