T.; Snyder, D. A.; Tibbitts, T. T. PCT Int. App. WO2008063300,
2008.
Long, J. Z.; Cravatt, B. F. Chem. Rev. 2011, 111, 6022.
Devane, W. A.; Hanus, L.; Breuer, A.; Pertwee, R. G.; Stevenson,
L. A.; Griffin, G.; Gibson, D.; Mandelbaum, A.; Etinger, A.;
Mechoulam, R. Science 1992, 258, 1946.
chromatography (silica gel, hexane/AcOEt mixtures). Sodium
periodate (3 mmol) was added at room-temperature to a solution
of the purified pinacol boronate ester 9 (1.0 mmol) in THF/H2O
(15/5 mL) and then 2 N HCl (0.40 mL) was added. The solution
was stirred at room temperature for 3-5 h, concentrated under
vacuum, diluted with water, and extracted with AcOEt. The
organic phase was separated, washed twice with water, dried
(Na2SO4), and evaporated under vacuum. The residue was
crystallized from THF/H2O to afford pure title compound. General
procedure for the synthesis of arylboronic acids 2 and 4. To a
stirred solution of the carboxylic acid 10 (1.0 mmol) in DMF (1
mL) were added at 0 °C HOBt (1.0 mmol) and EDC (1.0 mmol).
The mixture was stirred for 15 min at 0 °C and for 1 h at room
temperature. Then the appropriate amine (1.0 mmol) was added
and the mixture was stirred overnight at room temperature. The
mixture was diluted with brine and extracted with AcOEt. The
organic phase was washed with 2 N HCl solution, saturated
NaHCO3, and brine, dried (Na2SO4), and evaporated under
vacuum. The residue was purified by column chromatography
(silica gel, hexane/AcOEt mixtures). Sodium periodate (3 mmol)
was added at room-temperature to a solution of the purified
pinacol boronate ester 11 (1.0 mmol) in THF/H2O (15/5 mL) and
then 2 N HCl (0.40 mL) was added. The solution was stirred at
room temperature for 3-5 h, concentrated under vacuum, diluted
with water, and extracted with AcOEt. The organic phase was
separated, washed twice with water, dried (Na2SO4), and
evaporated under vacuum. The residue was crystallized from
THF/H2O to afford pure title compound. General procedure for
the synthesis of arylboronic acids 5 and 6. A solution of 4-tert-
butylphenyl isocyanate (1.0 mmol), pinacol boronate esters amine
hydrochloride or trifluoroacetate 8 (1.0 mmol) and Et3N (1.2
mmol) in dry DMF (5 mL) was stirred overnight at room
temperature. The mixture was diluted with brine and extracted
with AcOEt. The organic phase was washed twice with brine,
dried (Na2SO4), and evaporated under vacuum. The residue was
purified by column chromatography (silica gel, hexane/AcOEt
mixtures). Sodium periodate (3 mmol) was added at room-
temperature to a solution of the purified pinacol boronate ester
urea 12 (1.0 mmol) in THF/H2O (15/5 mL) and then 2 N HCl
(0.40 mL) was added. The solution was stirred at room
temperature for 3-5 h, concentrated under vacuum, diluted with
water, and extracted with AcOEt. The organic phase was washed
twice with water, dried (Na2SO4), and evaporated under vacuum.
The residue was crystallized from THF/H2O to afford pure title
compound 5. Data for selected compounds: compound 3c: mp >
230°C; IR 3302, 1661, 1626, 1589, 1524, 1340, 1242, 1124, 1013,
972, 817 cm-1; 1H NMR (400 MHz, DMSO-d6) δ 6.86 (1H, d, J =
16.0 Hz), 7.52 (2H, d, J = 8.4 Hz), 7.59 (1H, d, J = 16.0 Hz), 7.66
(4H, m), 7.77 (2H, d, J = 8.4 Hz), 7.94 (2H, s), 10.25 (1H, s); 13C
NMR (100 MHz, DMSO-d6) δ 117.95, 123.03, 128.98, 129.33,
133.60, 134.13, 134.84, 138.77, 140.71, 163.29. Compound 4a:
mp > 230 °C; IR 3349, 2959, 1656, 1638, 1517, 1407, 1320, 1251,
1100, 1008, 835, 729 cm-1; 1H NMR (400 MHz, DMSO-d6) δ 1.28
(9H, s), 7.36 (2H, d, J = 8.8 Hz); 7.70 (2H, d, J = 8.8 Hz), 7.93
(4H, s), 8.26 (2H, s), 10.19 (1H, s); 13C NMR (100 MHz, DMSO-
d6) δ 31.18, 34.00, 120.15, 125.15, 126.44, 133.95, 136.19,
136.52, 145.99, 165.43. Compound 5a: mp > 230 °C. IR 3319,
2959, 1639, 1598, 1550, 1408, 1359, 1231, 1114, 1016, 816 cm-1;
1H NMR (400 MHz, DMSO-d6) δ 1.24 (9H, s), 4.30 (2H, d, J =
6.0 Hz), 6.54 (1H, t, J = 6.0 Hz), 722-7.33 (6H, m), 7.52 (2H, d, J
= 7.8 Hz), 8.00 (2H, s), 8.46 (1H, s); 13C NMR (100 MHz,
DMSO-d6) δ 31.17, 33.69, 42.66, 117.45, 125.10, 125.95, 134.07,
137.70, 142.14, 143.24, 155.19.
7.
8.
9.
Goparaju, S. K.; Ueda, N.; Taniguchi, K.; Yamamoto, S. Biochem.
Pharmacol. 1999, 57, 417.
10. Boger, D. L.; Henriksen, S. J.; Cravatt, B. F. Curr. Pharm. Des.
1998, 4, 303.
11. Thabuis, C.; Destaillats, F.; Tissot-Favre, D.; Martin, J.-C. Lip.
Technol. 2007, 19, 225.
12. (a) Cravatt, B. F.; Saghatelian, A.; Hawkins, E. G.; Clement, A.
B.; Bracey, M. H.; Lichtman, A. H. Proc. Natl. Acad. Sci. U.S.A.
2004, 101, 10821; (b) Lichtman, A. H.; Shelton, C. C.; Advani, T.;
Cravatt, B. F. Pain 2004, 109, 319; (c) Cravatt, B. F.; Demarest,
K.; Patricelli, M. P.; Bracey, M. H.; Giang, D. K.; Martin, B. R.;
Lichtman, A. H. Proc. Natl. Acad. Sci. U.S.A. 2001, 98, 9371.
13. Karsak, M.; Gaffal, E.; Date, R.; Wang-Eckhardt, L.; Rehnelt, J.;
Petrosino, S.; Starowicz, K.; Steuder, R.; Schlicker, E.; Cravatt, B.
F.; Mechoulam, R.; Buettner, R.; Werner, S.; Di Marzo, V.;
Tueting, T.; Zimmer, A. Science 2007, 316, 1494.
14. (a) Naidu, P. S.; Varvel, S. A.; Ahn, K.; Cravatt, B. F.; Martin, B.
R.; Lichtman, A. H. Psychopharmacology 2007, 192, 61; )
, S.; Sanchez-Alavez, M.; Wills, D. N.; Cravatt,
B. F.; Henriksen, S. J. Sleep 2004, 27, 857; (c) Kathuria, S.;
Gaetani, S.; Fegley, D.; Valino, F.; Duranti, A.; Tontini, A.; Mor,
M.; Tarzia, G.; La Rana, G.; Calignano, A.; Giustino, A.; Tattoli,
M.; Palmery, M.; Cuomo, V.; Piomelli, D. Nat. Med. 2003, 9, 76;
(d) - , S.; Gombart, L.; Cravatt, B. F.; Henriksen,
S. J. Exp. Neurol. 2001, 172, 235.
15. Otrubova, K.; Ezzili, C.; Boger, D. L. Bioorg. Med. Chem. Lett.
2011, 21, 4674.
16. Blankman, J. L.; Cravatt, B. F.; Barker, E. L. Pharmacol Rev.
2013, 65, 849.
17. Huggins, J. P.; Smart, T. S.; Langman, S.; Taylor, L.; Young, T.
Pain 2012, 153, 1837.
18. Di Marzo V. Pain 2012, 153, 1785.
19. (a) Kaneko, Y.; Szallasi, A. Br. J. Pharmacol. 2014, 171, 2474;
(b) Julius, D. Annu. Rev. Cell Dev. Biol. 2013, 29, 355; (c)
Trevisani, M.; Gatti, R. Open Pain J. 2013, 6 (suppl. 1), 108; (d)
Bishnoi, M.; Premkumar, L. S. Open Pain J. 2013, 6 (suppl. 1),
10; (e) Szallasi, A.; Sheta, M. Expert Opin. Investig. Drugs 2012,
21, 1351; (f) Trevisani, M.; Szallasi, A. Open Drug Discov. J.
2010, 2, 37; (g) Cortright, D. N.; Szallasi, A. Curr. Pharm. Des.
2009, 15, 1736; (h) Broad, L. M.; Keding, S. J.; Blanco, M. Curr.
Top. Med. Chem. 2008, 8, 1431; (i) Gunthorpe, M. J.; Szallasi, A.
Curr. Pharm. Des. 2008, 14, 32; (j) Westaway, S. M. J. Med.
Chem. 2007, 50, 2589; (k) Gharat, L.; Szallasi, A. Drug Develop.
Res. 2007, 68, 477; (l) Szallasi, A.; Cortright, D. N.; Blum, C. A.;
Eid, S. R. Nature Rev. Drug Discov. 2007, 6, 357.
20. (a) Maione, S.; Costa, B.; Piscitelli, F.; Morera, E.; De Chiaro, M.;
Comelli, F.; Boccella, S.; Guida, F.; Verde, R.; Ortar, G.; Di
Marzo, V. Pharmacol. Res. 2013, 76, 98; (b) Morera, E; De
Petrocellis, L.; Morera, L.; Schiano Moriello, A.; Ligresti, A.;
Nalli, M.; Woodward, D. F.; Di Marzo, V.; Ortar, G. Bioorg. Med.
Chem. Lett. 2009, 19, 6806; (c) Maione, S.; De Petrocellis, L.; de
Novellis, V.; Schiano Moriello, A.; Petrosino, S.; Palazzo, E.;
Rossi, F.; Woodward, D. F.; Di Marzo, V. Br. J. Pharmacol. 2007,
150, 766. For a review on FAAH/COX or TRPV1 dual-action
compounds as novel analgesic agents, see: Fowler, C. J.; Naidu, P.
S.; Lichtman, A.; Onnis, V. Br. J. Pharmacol. 2009, 156, 412.
Inhibition of FAAH, TRPV1, and COX2 by NSAID-serotonin
conjugates has been also reported recently: Rose, T. M.; Reilly, C.
A.; Deering-Rice, C. E.; Brewster, C. Bioorg. Med. Chem. Lett.
2014, 24, 5695.
23. Ishiyama, T.; Itoh, Y.; Kitano, T.; Miyaura, N. Tetrahedron Lett.,
1997, 38, 3447.
24. Fatty amide hydrolase (FAAH) assays. The effect of compounds
on the enzymatic hydrolysis of anandamide was obtained using
membranes prepared from rat brain, incubated with the test
compounds and [14C]AEA (2.4 µM) in 50 mM Tris-HCl, pH 9, for
30 min at 37 °C. [14C]Ethanolamine produced from [14C]AEA
hydrolysis was measured by scintillation counting of the aqueous
phase after extraction of the incubation mixture with 2 volumes of
CHCl3/CH3OH = 2/1 (by volume). Data are expressed as the
concentration exerting 50% inhibition of AEA hydrolysis (IC50),
calculated by GraphPad. TRPV1 channel assays. HEK293 (human
embryonic kidney) cells stably over-expressing recombinant
human TRPV1 were grown on 100 mm diameter Petri dishes as
mono-layers in minimum essential medium (MEM) supplemented
with non-essential amino acids, 10% fetal bovine serum, and 2
21. Coutts, S. J.; Adams, J.; Krolikowski, D.; Snow, R. J. Tetrahedron
Lett. 1994, 35, 5109.
22. General procedure for the preparation of arylboronic acids 1, 3,
7. To a stirred solution of the appropriate carboxylic acid (1.0
mmol) in DMF (1 mL) were added at 0 °C HOBt (1.0 mmol) and
EDC (1.0 mmol). The mixture was stirred for 15 min at 0 °C and
for 1 h at room temperature. Then, the pinacol boronate ester
amine hydrochloride or trifluoroacetate 8 (1.0 mmol) and Et3N
(1.0 mmol) were added, and the mixture was stirred overnight at
room temperature. The mixture was diluted with brine and
extracted with AcOEt. The organic phase was washed with 2 N
HCl solution, saturated NaHCO3, and brine, dried (Na2SO4), and
evaporated under vacuum. The residue was purified by column