Chen et al.
cans ATCC27774 in combination with infrared spectroscopy
have revealed an active site comprised of a heterobimetallic
(Scys)2Ni(µ-Scys)2(µ-X)Fe(CO)(CN)2 (X ) O, OH) cluster.4-7
The bridging ligand, X, was proposed to be an oxide or
hydroxide in the oxidized state and was found to be absent
in the reduced state. The geometry of nickel in the active
site of [NiFe] H2ases is pseudotetrahedral in the reduced state
and pseudosquare-pyramidal in the oxidized state. During
the catalytic cycle of [NiFe] H2ases, the various catalytic
states corresponding to IR vibrations, the EPR g value, and
Em values (vs NHE) were proposed; the formal oxidation
state of the nickel center in the Ni-A, Ni-B, and Ni-C states
is a paramagnetic Ni(III), while it is a Ni(II) in the Ni-R,
Ni-SU, Ni-SI, and Ni-SIa states.8 Hall and De Gioia
suggested that the Ni-R state existed as [(Scys-H)(Scys)NiII(µ-
Several mononuclear nickel-thiolate complexes have been
synthesized to obtain information about the structure of Ni
in the active site of the [NiFe] H2ase.13 Complex NiII(BmMe)2
(BmMe ) bis(2-mercapto-1-methylimidazolyl)borate) with a
[NiS4H2] core and an Ni‚‚‚H-B interaction may provide a
structural model of the nickel site of a [NiFe] H2ase.14 Model
complex [NiII(SC(NH2)NHNCH-C6H4-o-OH)2] with the la-
bile phenolic OH group catalyzes the isotopic exchange of
D2 with the phenol OH proton upon exposure of a DMSO/
ethanol solution of the Ni complex to D2.15 Recent kinetic
studies of the protonation of complexes [Ni(SPh)(triphos)]+,
[Ni(SePh)(triphos)]+, and [Ni(SEt)(triphos)]+ (triphos )
(Ph2PCH2CH2)2PPh) revealed that the sulfur atom’s lone pair
of electrons is the initial site for the protonation of [Ni(SR)-
(triphos)]+.16 However, for the more electron-donating alky-
lthiolate ligand ligated to Ni, interaction of the proton with
both the nickel and sulfur sites (an η2-EtS-H complex) was
proposed.16 Recently, Tatsumi and co-workers reported the
isolation of dithiolato-bridged [NiFe] complexes, [Fe(CO)2-
S
cys)2Fe(CO)(CN)2] and [(Scys-H)(Scys)NiII(µ-H)(µ-Scys)2-
Fe(CO)(CN)2] with a Scys‚‚‚H interacting directly with the
nickel center (a [Ni‚‚‚H-Scys] interaction).9,10 Both of the
proposed mechanisms suggested that the intermediate Ni-C
state existed as [(Scys-H)(Scys)NiIII(µ-H)(µ-Scys)2Fe(CO)-
(CN)2], a hydride bridge. Also, the architecture of the silent-
active Ni-SIa is proposed to be a Cys‚‚‚SH proton directly
interacting with nickel, [(Scys-H)(Scys)NiII(µ-Scys)2Fe(CO)-
(CN)2]. Early electron nuclear double resonance (ENDOR)
studies have provided evidence for the existence of a solvent
exchangeable proton which may coordinate to the Ni atom
as an in-plane hydride form or as a η2-H2 form.11 Recently,
ENDOR and hyperfine sublevel correlation spectroscopy
(HYSCORE) have been applied to study the active site of
the catalytic [NiFe] hydrogenase from D. Vulgaris Miyazaki
F. in the reduced Ni-C state.5c-d,12 These techniques have
provided direct experimental evidence for the hydride
bridging between the nickel and iron atoms. The Ni-C state
was suggested to be either an early product of the heterolytic
cleavage of H2 or a precursor to H2 formation.12
(CN)2(µ-SCH2CH2CH2S)Ni(S2CNR2)]- (R ) Et; R2
)
-(CH2)5-). These complexes display the close structural
feature of the active site of reduced form [NiFe] H2ase.17
In the previous study of the [NiII(L)(P-(o-C6H4S)2(o-C6H4-
SH))] (L ) SePh (4), S-C4H3S (7)) complexes, the interaction
between the thiol proton and both the nickel and sulfur atoms
(a combination of intramolecular [Ni-S‚‚‚H-S] and [Ni‚‚‚H-
S] interactions) was demonstrated.18 The desire to explore
the correlation between the extent of the interactions and
the basicity (electronic density) of nickel has inspired us to
synthesize model complexes [NiII(L)(P-(o-C6H4S)2(o-C6H4-
SH))]0/1- (L ) PPh3 (1), SePh (4), Se-p-C6H4-Cl (5), and Cl
(6)) and [NiII(L′)(P(o-C6H4S)2(o-C6H4-SCH3))]0/1- (L′ ) PPh3
(8), SPh (9), SePh (10)) with various electron-donating
ligands, L/L′, coordinated to the nickel center. This study
further provides evidence that the pendant thiol proton of
the Ni(II) complexes, [NiII(L)(P-(o-C6H4S)2(o-C6H4SH))] 0/1-
,
(5) (a) Higuchi, Y.; Yagi, T.; Yasuoka, N. Structure 1997, 5, 1671-1680.
(b) Higuchi, Y.; Ogata, H.; Miki, K.; Yasuoka, N.; Yagi, T. Structure
1999, 7, 549-556. (c) Ogata, H.; Mizoguchi, Y.; Mizuno, N.; Miki,
K.; Adachi, S.-I.; Yasuoka, N.; Yagi, T.; Yamauchi, O.; Hirota, S.;
Higuchi, Y. J. Am. Chem. Soc. 2002, 124, 11628-11635. (d) Foerster,
S.; Stein, M.; Brecht, M.; Ogata, H.; Higuchi, Y.; Lubitz, W. J. Am.
Chem. Soc. 2003, 125, 83-93.
were “arrested” by both the sulfur of thiolate and nickel
resulting in combinations of intramolecular [Ni-S‚‚‚H-S]
and [Ni‚‚‚H-S] interactions, and the extent of the interac-
tions was modulated by the monodentate ligand.
Results and Discussion
(6) Rousset, M.; Montet, Y.; Guigliarelli, B.; Forget, A.; Asso, M.;
Bertrand, P.; Fontecilla-Camps, J. C.; Hatchikian, E. C. Proc. Natl.
Acad. Sci. U.S.A. 1998, 95, 11625-11630.
Synthesis of Ni(II)-Thiol Complex [NiII(PPh3)(P-(o-
C6H4S)2(o-C6H4SH))] (1). Reaction of NiCl2(PPh3)2 and tris-
(2-phenylthiol)phosphine (P(o-C6H4SH)3) in THF at ambient
temperature led to the isolation of the red-brown four-
(7) Matias, P. M.; Soares, C. M.; Saraiva, L. M.; Coelho, R.; Morais, J.;
Le Gall, J.; Carrondo, M. A. J. Biol. Inorg. Chem. 2001, 6, 63-81.
(8) (a) De Lacey, A. L.; Hatchikian, E. C.; Volbeda, A.; Frey, M.;
Fontecilla-Camps, J. C.; Fernandez, V. M. J. Am. Chem. Soc. 1997,
119, 7181-7189. (b) Maroney, M. J.; Davidson, G.; Allan, C. B.;
Figlar, J. Struct. Bonding 1998, 92, 1-65. (c) Bagley, K. A.; Duin,
E. C.; Roseboom, W.; Albracht S. P. J.; Woodruff, W. H. Biochemistry
1995, 34, 5527. (d) Coremans, J. M. C. C.; van der Zwaan, G. W.;
Albracht, S. P. J. Biochim. Biophys. Acta 1992, 1119, 157-168. (e)
Stein, M.; Lubitz, W. Curr. Opin. Chem. Biol. 2002, 6, 243-249.
(9) Niu, S.; Thomson, L. M.; Hall, M. B. J. Am. Chem. Soc. 1999, 121,
4000-4007.
(10) De Gioia, L.; Fantucci, P.; Guigliarelli, B.; Bertrand, P. Inorg. Chem.
1999, 38, 2658-2662.
(11) (a) Fan, C.; Teixeira, M.; Moura, J.; Moura, I.; Huynh, B. H.; Le
Gall, J.; Peck, H. D., Jr.; Hoffman, B. M. J. Am. Chem. Soc. 1991,
113, 20-24. (b) Whitehead, J. P.; Gurbiel, R. J.; Bagyinka, C.;
Hoffman, B. M.; Maroney, M. J. J. Am. Chem. Soc. 1993, 115, 5629-
5635.
(13) (a) Darensbourg, M. Y.; Lyon, E. J.; Smee, J. Coord. Chem. ReV.
2000, 206, 533-561. (b) Allan, C. B.; Davidson, G.; Choudhury, S.
B.; Gu, Z.; Bose, K.; Day, R. O.; Maroney, M. J. Inorg. Chem. 1998,
37, 4166-4167. (c) James, T. L.; Cai, L.; Mutterties, M. C.; Holm,
R. H. Inorg. Chem. 1996, 35, 4148-4161. (d) Cha, M.; Shoner, S.
C.; Kovacs, J. A. Inorg. Chem. 1993, 32, 1860-1863. (e) Nguyen,
D. H.; Hsu, H.-F.; Millar, M.; Koch, S. A.; Achim, C.; Bominaar, E.
L.; Munck, E. J. Am. Chem. Soc. 1996, 118, 8963-8964. (f)
Bouwman, E.; Reedijk, J. Coord. Chem. ReV. 2005, 249, 1555-1581.
(14) Alvarez, H. M.; Krawiec, M.; Donovan-Merkert, B. T.; Fouzi, M.;
Rabinovich, D. Inorg. Chem. 2001, 40, 5736-5737.
(15) Zimmer, M.; Schulte, G.; Luo, X.-L.; Crabtree, R. H. Angew. Chem.,
Int. Ed. Engl. 1991, 30, 193-194.
(16) Clegg, W.; Henderson, R. A. Inorg. Chem. 2002, 41, 1128-1135.
(17) Li, Z.; Ohki, Y.; Tatsumi, K. J. Am. Chem. Soc. 2005, 127, 8950-
8951.
(12) Foerster, S.; van Gastel, M.; Brecht, M.; Lubitz, W. J. Biol. Inorg.
Chem. 2005, 10, 51-62.
2308 Inorganic Chemistry, Vol. 45, No. 5, 2006