8026
E. Kleinpeter et al. / Tetrahedron 65 (2009) 8021–8027
shielding are used to visualize the TSNMRS of 3b and 4b in
Figure 4.
evaporated, resulting in an oil, which became crystalline on treat-
ment with Et2O. The crystals were filtered off and recrystallized
from EtOH. Yield: 0.67 g (54%), mp: 189–190 ꢁC.
NMR chemical shifts were calculated by the GIAO method46,47 at
the B3LYP/6-31G level of theory (the reference compound TMS
*
was calculated at the same level). All calculations were carried out
on SGI workstations and LINUX clusters.
Supplementary data
The synthesis of naphth[1,2-e]- (3b,c) and naphth[2,1-e]-
[1,3]oxazino[4,3-a]isoquinolines (4b,c), and the preparation of 1-
(6,7-dimethoxy-1,2,3,4-tetrahydroisoquinolin-1-yl)-2-naphthol (3a)
and 2-(6,7-dimethoxy-1,2,3,4-tetrahydroisoquinolin-1-yl)-1-naphthol
(4a) were reported previously.37 2-(6,7-Dimethoxy-1,2,3,4-tetrahy-
droisoquinolin-1-yl)ethanol (1a) and 2-(6,7-dimethoxy-1,2,3,4-
tetrahydroisoquinolin-1-yl)phenol (2a) were synthesized according
to literature procedures.38,39
Absolute energies, bond angles and bond distances, and x,y,z-
coordinates at the B3LYP/6-31G level of theory for 1–4. Supple-
*
mentary data associated with this article can be found in the online
References and notes
1. Chen, Z.; Wannere, C. S.; Corminboeuf, C.; Puchta, R.; von Rague´ Schleyer, P.
Chem. Rev. 2005, 105, 3842.
´
2. von Rague Schleyer, P.; Manoharan, M.; Wang, Z. X.; Kiran, B.; Jiao, Y.; Puchta,
4.2. 9,10-Dimethoxy-1,6,7,11b-tetrahydro-2H,4H-1,3-
oxazino[4,3-a]isoquinoline (1b)
R.; van E. Hommes, N. J. R. Org. Lett. 2001, 3, 2465.
3. Klod, S.; Kleinpeter, E. J. Chem. Soc., Perkin Trans. 2 2001, 1893.
4. To´th, G.; Kova´cs, J.; Le´vai, A.; Koch, A.; Kleinpeter, E. Magn. Reson. Chem. 2001,
39, 251.
5. Kleinpeter, E.; Holzberger, A. Tetrahedron 2001, 57, 6941.
6. Germer, A.; Klod, S.; Peter, M. G.; Kleinpeter, E. J. Mol. Model. 2002, 8, 231.
7. Klod, S.; Koch, A.; Kleinpeter, E. J. Chem. Soc., Perkin Trans. 2 2002, 1506.
8. Kova´cs, J.; To´th, G.; Simon, A.; Le´vai, A.; Koch, A.; Kleinpeter, E. Magn. Reson.
Chem. 2003, 41, 193.
9. Kleinpeter, E.; Klod, S.; Rudorf, W.-D. J. Org. Chem. 2004, 69, 4317.
10. Kleinpeter, E.; Klod, S. J. Am. Chem. Soc. 2004, 126, 2231.
11. Szatmari, I.; Martinek, T. A.; Lazar, L.; Koch, A.; Kleinpeter, E.; Neuvonen, K.;
Fu¨lo¨p, F. J. Org. Chem. 2004, 69, 3645.
To a solution of amino alcohol 1a (0.71 g, 3 mmol) in MeOH
(10 mL), 36% formaldehyde solution (0.5 mL) was added. The
mixture was allowed to stand at room temperature for 1 h, then
poured into H2O (50 mL) and extracted with CH2Cl2 (3ꢃ25 mL). The
combined organic extracts were dried (Na2SO4) and evaporated.
The oily product crystallized on treatment with Et2O. The crystals
were filtered off and recrystallized from i-Pr2O. Yield: 0.61 g (82%),
mp 102–103 ꢁC.
´
´ ´
12. Kleinpeter, E.; Klod, S. J. Mol. Struct. 2004, 704, 79.
13. Ryppa, C.; Senge, M. O.; Hatscher, S. S.; Kleinpeter, E.; Wacker, Ph.; Schilde, U.;
Wiehe, A. Chem.dEur. J. 2005, 11, 3427.
14. Kleinpeter, E.; Schulenburg, A.; Zug, I.; Hartmann, H. J. Org. Chem. 2005, 70,
6592.
4.3. 9,10-Dimethoxy-1,6,7,11b-tetrahydro-2H,4H-1,3-
oxazino[4,3-a]isoquinolin-4-one (1c)
15. Kleinpeter, E.; Schulenburg, A. J. Org. Chem. 2006, 71, 3869.
16. Heydenreich, M.; Koch, A.; Klod, S.; Szatma´ri, I.; Fu¨lo¨p, F.; Kleinpeter, E. Tetra-
hedron 2006, 62, 11081.
To a stirred mixture of amino alcohol 1a (1.19 g, 5 mmol), tolu-
ene (30 mL), NaHCO3 (0.63 g, 7.5 mmol), and H2O (30 mL), ethyl
chloroformate (0.60 g, 5.5 mmol) was added and the mixture was
stirred at room temperature for 1 h. The organic layer was sepa-
rated and the aqueous layer was extracted with EtOAc (3ꢃ30 mL).
The combined extracts were dried (Na2SO4) and evaporated to yield
1.50 g (97%) of ethyl 1-(20-hydroxyethyl)-6,7-dimethoxy-1,2,3,4-
tetrahydroisoquinoline-2-carboxylate as an oily product, which
was used in the next step without further purification.
The previous urethane derivative (1.00 g, 3.2 mmol) was thor-
oughly mixed with NaOMe (0.18 g, 3.3 mmol) and the mixture was
kept under N2 at 130 ꢁC for 45 min. The melt was extracted with hot
EtOAc (5ꢃ30 mL), and the combined organic phases were washed
with 5% HCl (2ꢃ30 mL) and H2O (2ꢃ30 mL), dried (Na2SO4), and
evaporated. The oily residue crystallized on treatment with Et2O.
The crystals were filtered off and recrystallized from i-Pr2O. Yield:
0.44 g (52%), mp 119–121 ꢁC.
ˇ
´
´
17. Rasovic, A.; Steel, P. J.; Kleinpeter, E.; Markovic, R. Tetrahedron 2007, 63, 1937.
18. Kleinpeter, E.; Koch, A.; Sahoo, H. S.; Chand, D. K. Tetrahedron 2008, 64, 5044.
19. Kleinpeter, E.; Koch, A.; Seidl, P. R. J. Phys. Chem. A 2008, 112, 4989.
20. Kleinpeter, E.; Klod, S.; Koch, A. J. Mol. Struct. (THEOCHEM) 2007, 811, 45 and
references therein.
21. Kleinpeter, E.; Klod, S.; Koch, A. J. Mol. Struct. (THEOCHEM) 2008, 857, 89.
22. Kleinpeter, E.; Koch, A.; Shainyan, B. A. J. Mol. Struct. (THEOCHEM) 2008, 863,
127.
23. Kleinpeter, E.; Koch, A. J. Mol. Struct. (THEOCHEM) 2008, 851, 313.
24. Kleinpeter, E.; Klod, S.; Koch, A. J. Org. Chem. 2008, 73, 1498.
25. Alkorta, I.; Elguero, J. New J. Chem. 1998, 381.
26. (a) Martin, N. H.; Allen, N. W., III; Moore, K. D.; Vo, L. J. Mol. Struct. (THEOCHEM)
1998, 454, 161; (b) Martin, N. H.; Allen, N. W., III; Minga, E. K.; Ingrassia, S. T.;
Brown, J. D. Proceedings of ACS Symposium, Modeling NMR Chemical Shifts:
Gaining Insight into Structure and Environment; ACS: Washington, 1999.
27. (a) Waugh, J. S.; Fessenden, R. W. J. Am. Chem. Soc. 1957, 79, 846; (b) Johnson, C. E.;
Bovey, F. A. J. Chem. Phys. 1958, 29, 1012; (c) Jonathan, N.; Gordon, S.; Dailey, B. P.
J. Chem. Phys. 1962, 36, 2443; (d) Barfield, M.; Grant, D. M.; Ikenberry, D.
J. Am. Chem. Soc. 1975, 97, 6956; (e) Agarwal, A.; Barnes, J. A.; Fletcher, J. L.;
McGlinchey, M. J.; Saver, B. G. Can. J. Chem.1977, 55, 2575; (f) Haigh, C. W.; Mallion,
R. B. Progress in NMR Spectroscopy; Pergamon: New York, NY, 1980; Vol. 13, p 303.
28. Haigh, C. W.; Mallion, R. B. Mol. Phys. 1971, 22, 955.
4.4. 11,12-Dimethoxy-8,9-dihydro-6H,13bH-isoquino[2,1-c]-
[1,3]benzoxazine (2b)
29. (a) Haigh, C. W.; Mallion, R. B. Org. Magn. Reson. 1972, 4, 203; (b) Dailey, B. P.
J. Chem. Phys. 1964, 41, 2304.
30. (a) Fallah-Bagher-Shaidaei, H.; Wannere, C. S.; Corminboeuf, C.; Puchta, R.; von
Rague´ Schleyer, P. Org. Lett. 2006, 8, 863; (b) Corminboeuf, C.; Heine, T.; Seifert,
To a stirred suspension of amino phenol 2a (1.14 g, 4 mmol) in
EtOH (10 mL) 36% formaldehyde solution (10 mL) was added and
the mixture was stirred at room temperature for 30 min. The
crystalline product was filtered off, washed with H2O and recrys-
tallized from EtOAc. Yield: 0.79 g (66%), mp: 213–216 ꢁC.
´
G.; von Rague Schleyer, P.; Weber, J. PhysChemChemPhys 2004, 6, 273.
31. Stanger, A. Chem.dEur. J. 2006, 12, 2745.
32. (a) Lazzeretti, P. PhysChemChemPhys 2004, 6, 217; (b) Stanger, A. Chem. Com-
mun. 2009, 1939.
33. Martzin, N. H.; Brown, J. D.; Nance, K. H.; Schaefer, H. F., III; von Rague´ Schleyer,
P.; Wang, Z.-X.; Woodcock, H. L. Org. Lett. 2001, 3, 3823.
34. Pelloni, St.; Lazzeretti, P.; Zanasi, R. J. Phys. Chem. A 2007, 111, 8163.
35. Martin, N. H.; Loveless, M. M.; Main, K. L.; Wade, D. C. J. Mol. Graph. Model.
2006, 25, 389.
36. Heydenreich, M.; Koch, A.; La´za´r, L.; Szatma´ri, I.; Sillanpa¨a¨, R.; Kleinpeter, E.;
Fu¨lo¨p, F. Tetrahedron 2003, 59, 1951.
4.5. 11,12-Dimethoxy-8,9-dihydro-6H,13bH-isoquino[2,1-c]-
[1,3]benzoxazin-6-one (2c)
37. Heydenreich, M.; Koch, A.; Szatma´ri, I.; Fu¨lo¨p, F.; Kleinpeter, E. Tetrahedron
2008, 64, 7378.
To a mixture of amino phenol 2a (1.14 g, 4 mmol), Et3N (0.81 g,
8 mmol), and dry toluene (20 mL), a 20% solution of phosgene in
toluene (2.0 mL, 4 mmol) was added and the suspension was stir-
red at room temperature for 2 h. EtOAc (100 mL) was added and the
organic phase was washed with 5% HCl (2ꢃ30 mL) and then with
H2O (2ꢃ30 mL). The organic phase was dried (Na2SO4) and
38. Tietze, L. F.; Rackelmann, N.; Mu¨ller, I. Chem.dEur. J. 2004, 10, 2722.
39. Weinbach, E. C.; Hartung, W. H. J. Org. Chem. 1950, 15, 676.
40. As observed for 4b,37 no NOEs were found between H-15b and H-10 or H-11 in
2b; the corresponding distances are too long to generate NOE enhancements in
the NMR spectra. NOE between H-15b and the syn-positioned H-8 could not be
observed in the NOESY spectrum because of identical proton chemical shifts. In