epoxides12 to give trans-bicyclo[3.1.0]hexan-2-ols in excel-
lent yields and diastereoselectivity.13 In the present com-
munication, we report adaptation of this methodology with
unsaturated terminal aziridines to achieve access to 2-amino-
bicyclo[3.1.0]hexanes. The latter structural motif is found
in analgesics,14 antiviral agents,15 and antiobesity therapeu-
tics.16
Preliminary evaluation of our LTMP-mediated intramo-
lecular cyclopropanation protocol13 with terminal unsaturated
aziridines used N-tosyl aziridine 6,2,17 which on addition of
LTMP over 1 h gave bicyclic amine 8 as a single trans-
diastereomer,18 albeit in only 19% yield (Scheme 2). The
trisyl,23 mesitylsulfonyl, p-methoxybenzenesulfonyl, and
Bus6-8 N-protected variants of aziridine 6 were examined
under the cyclopropanation conditions using LTMP and also
LiNCy2. However, use of all of these protecting groups led
to <15% yields of the corresponding bicyclic amines, apart
from Bus, which after 16 h resulted in a 23% yield of amine
1024 when LTMP was used and a 38% yield with LiNCy2
(Table 1, entries 1 and 2).25 2-Ene-1,4-diamine 118 (as a
Table 1. Optimization of the Synthesis of Bicyclic Amine 10a
Scheme 2. Synthesis of Bicyclic Amine 8
yield (%)
entry
base
equiv solvent conc (M)
temp
10 11
base added to aziridine 9 over 1 h
1
2
LTMP
LiNCy2
2
2
t-BuOMe
t-BuOMe
0.07
0.07
0 °C to rt 23 44
0 °C to rt 38 35
aziridine 9 added to base over 1 h
3
4
5
6
7
8
9
LTMP
2
2
2
2
2
2
3
3
3
3
3
3
3
3
t-BuOMe
t-BuOMe
t-BuOMe
t-BuOMe
t-BuOMe
t-BuOMe
t-BuOMe
t-BuOMe
t-BuOMe
THF
0.07
0.07
0.07
0.03
0.03
0.03
0.03
0.03
0.03
0.03
0.03
0.03
0.03
0.03
0 °C to rt 41 23
yield of bicyclic amine 8 could be increased to 37% by using
a slightly less hindered lithium amide in the reaction, lithium
dicyclohexylamide (LiNCy2, conditions otherwise as Scheme
2).19
On the basis that complications arising from competitive
ortho-lithiation of the tosyl group could be contributing to
the low yields of 8,20 other N-protecting groups not (or less)
susceptible to this process were screened. The t-Bu,21 Boc,22
LiNCy2
LiNCy2
LiNCy2
LiNCy2
LiNCy2
LiNCy2
0 °C to rt 54
6
6
0 °C
65
0 °C
68 <5
67
67 16
73 <5
69 10
-10 °C
-40 °C
0 °C
7
10 LTMP
11 LDA
0 °C
0 °C
63
9
12 LiNCy2
13 LiNCy2
14 LiNCy2
15b LiNCy2
16c LiNCy2
0 °C
0 °C
0 °C
0 °C
29 36
71 <5
68 <5
72 <5
75 <5
Hexane
Et2O
t-BuOMe
t-BuOMe
(9) For recent reviews on aziridinyl and oxiranyl anions, see: (a) Oxiranyl
and aziridinyl anions as reactive intermediates in synthetic organic chemistry.
Florio, S., Ed.; Tetrahedron 2003, 59, 9683-9864. (b) Hodgson, D. M.;
Bray, C. D. In Aziridines and Epoxides in Organic Synthesis; Yudin, A.
K., Ed.; Wiley-VCH: Weinheim, 2006; pp 145-184. (c) Hodgson, D. M.;
Bray, C. D.; Humphreys, P. G. Synlett 2006, 1-22.
(10) (a) Davis, F. A.; Liu, H.; Liang, C.-H.; Reddy, G. V.; Zhang, Y.;
Fang, T.; Titus, D. D. J. Org. Chem. 1999, 64, 8929-8935. (b) Aggarwal,
V. K.; Alonso, E.; Ferrara, M.; Spey, S. E. J. Org. Chem. 2002, 67, 2335-
2344. (c) Luisi, R.; Capriati, V.; Florio, S.; Di Cunto, P.; Musio, B.
Tetrahedron 2005, 61, 3251-3260.
(11) Carbene reactivity has been observed for ring-fused aziridines, where
2H-azirine formation is less likely; see: Mu¨ller, P.; Riegert, D.; Bernar-
dinelli, G. HelV. Chim. Acta 2004, 87, 227-239. See also: Hodgson, D.
M.; Sˇtefane, B.; Miles, T. J.; Witherington, J. Chem. Commun. 2004, 2234-
2235.
0 °C
a 16 h reaction duration, unless otherwise indicated. b 1 h reaction
duration. c 2 h reaction duration.
mixture of diastereomers) was also isolated in these reactions
in 44% and 35% yields, respectively. It is noteworthy that
significant levels of cyclopropanation occur with N-Bus
aziridine 9, given the propensity of this and related N-Bus
aziridines to efficently dimerize under closely related condi-
tions (Scheme 1).8 Variation in the experimental conditions
with N-Bus aziridine 9 was then studied further, with the
aim of favoring cyclopropanation relative to dimerization
(Table 1).
(12) (a) Originally observed as minor reaction pathway; see: Crandall,
J. K.; Lin, L.-H. J. Am. Chem. Soc. 1967, 89, 4526-4527. (b) Apparu, M.;
Barelle, M. Tetrahedron 1978, 34, 1691-1697.
(13) (a) Hodgson, D. M.; Chung, Y. K.; Paris, J.-M. J. Am. Chem. Soc.
2004, 126, 8664-8665. (b) Hodgson, D. M.; Chung, Y. K.; Paris, J.-M.
Synthesis 2005, 2264-2266.
(14) Moshe, A. Eur. J. Med. Chem. 1981, 16, 199-206.
Reversing the addition order, so that aziridine 9 was added
dropwise to the base, led to increased yields of bicyclic amine
(15) (a) Rodriquez, J. B.; Marquez, V. E.; Nicklaus, M. C.; Mitsuya,
H.; Barchi, Jr., J. J. J. Med. Chem. 1994, 37, 3389-3399. (b) Marquez, V.
E.; Siddiqui, M. A.; Ezzitouni, A.; Russ, P.; Wang, J.; Wagner, R. W.;
Matteucci, M. D. J. Med. Chem. 1996, 39, 3379-3747. (c) Tchilibon, S.;
Joshi, B. V.; Kim, S.-K.; Duong, H. T.; Gao, Z.-G.; Jacobson, K. A. J.
Med. Chem. 2005, 48, 1745-1758. (d) Lee, J. A.; Moon, H. R.; Kim, H.
O.; Kim, K. R.; Lee, K. M.; Kim, B. T.; Hwang, K. J.; Chun, M. W.;
Jacobsen, K. A.; Jeong, L. S. J. Org. Chem. 2005, 70, 5006-5013.
(16) McBriar, M. D.; Guzik, H.; Xu, R.; Paruchova, J.; Li, S.; P. A.;
Clader, J. W.; Greenlee, W. J.; Hawes, B. E.; Kowalski, T. J.; O’Neill, K.;
Spar, B.; Weig, B. J. Med. Chem. 2005, 48, 2274-2277.
(20) Huang, J.; O’Brien, P. Tetrahedron Lett. 2005, 46, 3253-3256.
(21) (a) Vedejs, E.; Kendall, J. T. J. Am. Chem. Soc. 1997, 119, 6941-
6942. (b) Vedejs, E.; Prasad, A. S. B.; Kendall, J. T.; Russel, J. S.
Tetrahedron 2003, 59, 9849-9857.
(22) Beak, P.; Wu, S.; Yum, E. K.; Jun, Y. M. J. Org. Chem. 1994, 59,
276-277.
(23) Huang, J.; O’Brien, P. Chem. Commun. 2005, 5696-5698.
(24) Isolated as a single diastereomer. Structure supported by X-ray
cam.ac.uk.
(17) Lapinsky, D. J.; Bergmeier, S. C. Tetrahedron 2002, 58, 7109-
7117.
(18) Determined by NOE analysis and by comparison with the analogous
epoxide cyclopropanation product; see ref 13a.
(19) Use of LDA under these conditions gave 30% yield of amine 8.
(25) With LiNCy2, quenching directly after addition of the aziridine 9
(1 h) indicated incomplete reaction; 9 (52%), amine 10 (10%), and dimer
11 (22%) were obtained.
996
Org. Lett., Vol. 8, No. 5, 2006