1 E. L. Knowles and J. T. B. Bain, Chem. Ind., 1968, 8, 232; F. Sidell,
E. T. Takafuji and D. R. Franz, Medical Aspects of Chemical and
Biological Warfare, TMM Publications, Washington, DC, 1997, pp.
271, O. Warburg, Hoppe-Seyler’s Z. Physiol. Chem., 1911, 76, 331;
D. Kellin, Proc. R. Soc. London., Ser.B., 1929, 104, 206; N. C. Horton
and J. J. Perona, Biochemistry, 2004, 43, 6841; A. S. Petrov, G. R. Pack
and G. Lamm, J. Phys. Chem. B, 2004, 108, 6072.
2 Selected reviews on anion sensing: R. Martinez-Ma´n˜ez and F. Sanceno´n,
J. Fluoresc., 2005, 15, 267; R. Martinez-Ma´n˜ez and F. Sanceno´n, Chem.
Rev., 2003, 103, 4419; F. P. Schmidtchen and M. Berger, Chem. Rev.,
1997, 97, 1609; M. M. G. Antonisse and D. N. Reinhoudt, Chem.
Commun., 1998, 443; E. Kimura and T. Koike, Chem. Commun., 1998,
1495; T. S. Snowden and E. V. Anslyn, Curr. Opin. Chem. Biol., 1999, 3,
740; P. A. Gale, Coord. Chem. Rev., 2000, 199, 181; J. H. Hartley,
T. D. James and C. J. Ward, J. Chem. Soc., Perkin Trans. 1, 2000, 3155;
P. D. Beer and P. A. Gale, Angew. Chem., Int. Ed., 2001, 40, 486;
P. A. Gale, Coord. Chem. Rev., 2001, 213, 79; V. Amendola,
L. Fabbrizzi, C. Mangano, P. Pallavicini, A. Poggi and A. Taglietti,
Coord. Chem. Rev., 2001, 219, 821; P. A. Gale, Coord. Chem. Rev., 2003,
240, 191.
mechanism, involving intramolecular H-bonding, should work
well in aqueous media** which would lead to the development of a
selective cyanide sensor of practical utility.
In summary, we have demonstrated for the first time that the
fluorescence signaling of anion binding can be modulated by
intramolecular H-bonding stabilization of anion–ionophore
adducts. Through this approach, fluorescence enhancement rather
than quenching is realized in anion sensing using a neutral organic
sensor. The fluorescence enhancement observed is attributed to the
stabilization of the anion–ionophore adducts from possible
quenching processes, in addition to the conformational restrictions
imposed by the intramolecular H-bonding. The present system
also shows noticeable cyanide selectivity in acetonitrile and is
expected on rational grounds to be integrated into a new sensor
system effective in water that is under active investigation.**
This work was financially supported by KOSEF through the
Center for Integrated Molecular Systems.
3 H. B. Herman and G. A. Rechnitz, Science, 1974, 184, 1074;
M. E. Meyerhoff, E. Pretsch, D. H. Welti and W. Simon, Anal.
Chem., 1987, 59, 144; H. J. Lee, I. J. Yoon, C. L. Yoo, H.-J. Pyun,
G. S. Cha and H. Nam, Anal. Chem., 2000, 72, 4694; E. Mertz and
S. C. Zimmerman, J. Am. Chem. Soc., 2003, 125, 3424; E. Mertz,
J. B. Beil and S. C. Zimmerman, Org. Lett., 2003, 5, 3127.
Notes and references
{ Selected data for 1: Yellow solid; mp 169.3–169.6 uC; 1H NMR
(300 MHz, CDCl3) d 2.85 (s, 6 H), 7.04 (t, J = 7.8 Hz, 1 H), 7.11 (d, J =
7.8 Hz, 1 H), 7.51 (t, J = 8.1 Hz, 2 H), 7.59 (t, J = 8.1 Hz, 1 H), 7.71 (d, J =
8.7 Hz, 1 H), 7.77 (d, J = 6.3 Hz, 1 H), 8.27 (d, J = 8.7 Hz, 1 H), 8.37 (d,
J = 7.5 Hz, 1 H), 8.54 (d, J = 8.7 Hz, 1 H) and 10.94 (br s, 1 H); 13C NMR
(75 MHz, CDCl3) d 183.5, 183.0, 182.6, 182.1 (q, J = 34.9 Hz), 152.3, 142.8,
137.4, 133.8, 132.3, 132.2, 132.1, 132.0 (q, J = 4.1 Hz), 130.8, 130.1, 129.5,
129.2, 123.1, 122.6, 118.7, 118.5, 118.4, 115.8, 115.7, 114.5 and 45.6; 19F
NMR (282 MHz, CDCl3) d 6.66; HRMS (EI) calc. for C20H17F3N2O3S
(M+) 422.0912, found (m/z) 422.0891. Selected data for 2: Pale green solid:
mp 66.8–67.0 uC; 1H NMR (300 MHz, CDCl3) d 2.86 (s, 6 H), 7.19–
7.13 (m, 3 H), 7.57–7.53 (m, 2 H), 7.86 (d, J = 8.1 Hz, 2 H), 8.32 (d, J =
8.7 Hz, 1 H), 8.37 (d, J = 8.2 Hz, 1 H) and 8.56 (d, J = 8.4 Hz, 1 H); 13C
NMR (75 MHz, CDCl3) d 179.8, 179.4, 178.9, 178.5 (q, J = 34.7 Hz),
152.6, 143.7, 133.7, 132.2, 132.1, 132.0, 130.8, 130.2, 129.6, 129.3, 125.4,
122.6, 118.8, 114.9, 110.0 (q, J = 289.5), 123.3, 118.2, 118.1, 115.7 and 45.6;
4 Y. K. Kim, Y.-H. Lee, H.-Y. Lee, M.-K. Kim, G. S. Cha and
K. H. Ahn, Org. Lett., 2003, 5, 4003.
5 D. Cui, X. Qian, F. Li and R. Zhang, Org. Lett., 2004, 6, 2757;
K. Tanaka, T. Kumagai, H. Aoki, M. Deguchi and S. Iwata, J. Org.
Chem., 2001, 66, 7328; W. Liu, Y. Wang, W. Jin, G. Shen and R. Yu,
Anal. Chim. Acta, 1999, 383, 299; V. G. Pivovarenko, A. Wro´blewska
and J. Blazejowski, J. Mol. Struct., 2004, 708, 175; K.-C. Wu, Y.-S. Lin,
´
Y.-S. Yeh, C.-Y. Chen, M. O. Ahmed, P.-T. Chou and Y.-S. Hon,
Tetrahedron, 2004, 60, 11861.
6 For a recent example of the utilization of H-bonding in fluorescence
modulation, although not relevant to the present system, see: D. Cui,
X. Qian, F. Liu and R. Zhang, Org. Lett., 2004, 6, 2757.
7 Y.-H. Li, L.-M. Chan, L. Tyer, R. T. Moody, C. M. Himel and
D. M. Hercules, J. Am. Chem. Soc., 1975, 97, 3118; H. Ikeda,
M. Nakamura, N. Ise, N. Oguma, A. Nakamura, T. Ikeda, F. Toda
and A. Ueno, J. Am. Chem. Soc., 1996, 118, 10980; J. R. Lakowicz,
Principles of Fluorescence Spectroscopy, Kluwer Academic–Plenum,
New York, 2nd edn, 1999.
19F NMR (282 MHz, CDCl3)
d 5.01; HRMS (EI) calc. for
C20H17F3N2O3S (M+) 422.0912, found (m/z) 422.0917.
§ Acetate and phosphate ions also gave similar fluorescence quenching with
para-TFADA and N-Ph-DA. A PET-type process may be suggested as a
fluorescence quenching mechanism for these species.
" The cyanide adduct of 1 showed a higher quantum yield (W = 0.15) than
that of the acetate adduct (W = 0.04). It should be also noted that the
quantum yield of 1 itself (and also 2) was much lower (W = 0.006) than that
of its cyanide adduct, and N-Ph-DA that has no trifluoroacetyl group (W =
0.27).
I In the case of the acetate ion, the binding constant could not be
determined under an assumption of 1 : 1 binding, from which we infer that
at any given time, there exist more than two fluorescing species, probably
due to intermolecular H-bonding interactions. A complete mechanistic
study will be detailed separately in a full account.
** Usually, polar solvents are known to compete more with intermolecular
H-bonding interactions than intramolecular H-bonding. We have found
that a chromogenic sensor based on TFACA shows a dramatic anion
selectivity in an aqueous media. This will be published elsewhere.
8 D. H. Lee, I. J. Hyun, J.-H. Lee and J.-I. Hong, Tetrahedron Lett., 2002,
43, 9637; Y. Koji, N. Yuki, C. Daniel, I. Naoko and S. Koji, J. Am.
Chem. Soc., 2005, 127, 6956; S. Ioana, M. Cristina, D. Franc¸ois,
L. David, W. Patrice and S. Gheorghe, J. Photochem. Photobiol., A,
2003, 161, 79; S. A. McFarland and N. S. Finney, J. Am. Chem. Soc.,
2001, 123, 1260.
9 A. P. de Silva, H. Q. N. Gunaratne, T. Gunnlaugsson, A. J. M. Huxley,
C. P. McCoy, J. T. Rademacher and T. E. Rice, Chem. Rev., 1997, 97,
1515; H. Miyaji, H.-K. Kim, E.-K. Sim, C.-K. Lee, W.-S. Cho,
J. L. Sessler and C.-H. Lee, J. Am. Chem. Soc., 2005, 127, 12510;
S. K. Kim, N. J. Singh, S. J. Kim, K. M. K. Swamy, S. H. Kim,
K.-H. Lee, K. S. Kim and J. Yoon, Tetrahedron, 2005, 61, 4545;
T. Gunnlaugsson, A. P. Davis and M. Glynn, Chem. Commun., 2001,
2556.
10 For related work from our group to this conformational restriction
mechanism, see: K. H. Ahn, H.-Y. Ku, Y.-S. Kim, S.-G. Kim,
Y. K. Kim, H. S. Son and J. K. Ku, Org. Lett., 2003, 5, 1419.
188 | Chem. Commun., 2006, 186–188
This journal is ß The Royal Society of Chemistry 2006