Si-Containing Polyphilic Bent-Core Molecules
A R T I C L E S
Scheme 2. Synthesis of Compounds Six-mBna
ferroelectric type, and also the optical appearance of the
mesophase is completely changed. The highly birefringent
textures usually observed for smectic phases are replaced by
optically isotropic phases composed of chiral domains with
opposite handedness. In the meanwhile, these “dark conglomer-
ate phases” were observed for several other bent-core molecules
with FE or AF switching smectic phases.15-18 Recently, a related
phenomenon was also observed in a cubic mesophase.19
However, though the subject of intensive discussions, the origin
of optical isotropy, chirality, and ferroelectricity remained
unclear.
To clarify the situation, we performed a systematic study,
concerning the influence of the molecular structure of these
oligosiloxane-derived polyphilic bent-core LCs upon their self-
organization in LC phases, which is reported herein. The most
important result is that two of these compounds show a
temperature-dependent inversion of the optical rotation. This
is the first report on a temperature-induced inversion of chirality
in a supramolecular system formed by achiral molecules. This
observation, together with the recently proposed concept of layer
optical chirality,20 allows now for the first time one to assign
the phase structure of the dark conglomerate phases of the
investigated compounds as synclinic tilted and ferroelectric
(SmCsPF). This leads to a fundamental understanding of the self-
organization in these systems and the switching behavior of these
mesophases. The SmCsPF organization is stabilized as the
segregation of oligosiloxane segments is increased, and this is
a function of the size of the oligosiloxane units, but also alkyl
chain length and spacer length are important. A transition from
a Reagents and conditions: (a) cat. [Pd(PPh3)4], NaHCO3, H2O, glyme,
reflux, 8 h;23 (b) 4-(4-n-alkoxybenzoyloxy)benzoic acid,26 DCC, DMAP,
CH2Cl2, 20 °C, 24 h;24 (c) H2, Pd/C, THF, 40 °C, 16 h; (d) 4-(ω-
alkenyloxy)benzoic acid,25 DCC, DMAP, CH2Cl2, 20 °C, 24 h;24 (e)
EtMe2SiH (x ) 1) or Me3Si(OMe2Si)x-1H (x ) 2,3), Karstedt’s catalyst,
toluene, 20 °C, 24 h.14,22
AF via superparaelectric to surface-stabilized FE switching is
found with increasing segregation. In addition, with increasing
length of the alkyl chains, a transition from smectic phases via
wavy deformed layers to a columnar phase is found, which is
mainly due to steric reasons. In contrast to the smectic phases,
in the columnar phase, the switching process is antiferroelectric
and takes place by rotation of the molecules around the long
axes, which reverses the superstructural chirality; that is, the
racemic nonpolar ground-state structure is switched into a
homogeneous chiral polar structure upon application of an
electric field. These results provide a lesson in principles of
self-assembly in polar ordered soft matter and offer fundamental
clues for future design of new bent-core mesogens with specific
properties, namely, superstructural chirality and polar order, in
a predictable way.
(14) Preliminary communication: Dantlgraber, G.; Eremin, A.; Diele, S.; Hauser,
A.; Kresse, H.; Pelzl, G.; Tschierske, C. Angew. Chem., Int. Ed. 2002, 41,
2408-2412.
(15) (a) Thisayukta, J.; Nakayama, Y.; Kawauchi, S.; Takezoe, H.; Watanabe,
J. J. Am. Chem. Soc. 2000, 122, 7441-7448. (b) Thisayukta, J.; Kamee,
H.; Kawauchi, S.; Watanabe, J. Mol. Cryst. Liq. Cryst. 2000, 346, 63-75.
(c) Shreenivasa Murthy, H. N.; Sadashiva, B. K. Liq. Cryst. 2002, 29,
1223-1234. (d) Ortega, J.; Folcia, C. L.; Etxebarria, J.; Gimeno, N.; Ros,
M. B. Phys. ReV. E 2003, 68, 011707. (e) Weissflog, W.; Schro¨der, M.
W.; Diele, S.; Pelzl, G. AdV. Mater. 2003, 15, 630-633. (f) Jakli, A.; Huang,
Y.-M.; Fodor-Csorba, K.; Vajda, A.; Galli, G.; Diele, S.; Pelzl, G. AdV.
Mater. 2003, 15, 1606-1610. (g) Schro¨der, M. W.; Diele, S.; Pelzl, G.;
Dunemann, U.; Kresse, H.; Weissflog, W. J. Mater. Chem. 2003, 13, 1877-
1882. (h) Schro¨der, M. W.; Pelzl, G.; Dunemann, U.; Weissflog, W. Liq.
Cryst. 2004, 31, 633-637. (i) Weissflog, W.; Sokolowski, S.; Dehne, H.;
Das, B.; Grande, S.; Schro¨der, M. W.; Eremin, A.; Diele, S.; Pelzl, G.;
Kresse, H. Liq. Cryst. 2004, 31, 923-933.
(16) Field-induced SmCP[*] phases: (a) Heppke, G.; Parghi, D. D.; Sawade,
H. Liq. Cryst. 2000, 27, 313-320. (b) Etxebarria, J.; Folcia, C. L.; Ortega,
J.; Ros, M. B. Phys. ReV. E 2003, 67, 042702.
(17) Bent-core dimers and oligomers and polymers based on oligosiloxane and
carbosilane units: (a) Dantlgraber, G.; Diele, S.; Tschierske, C. Chem.
Commun. 2002, 2768-2769. (b) Dantlgraber, G.; Baumeister, U.; Diele,
S.; Kresse, H.; Lu¨hmann, B.; Lang, H.; Tschierske, C. J. Am. Chem. Soc.
2002, 124, 14852-14853. (c) Keith, C.; Amaranatha Reddy, R.; Tschierske,
C. Chem. Commun. 2005, 871-873. (d) Keith, C.; Amaranatha Reddy,
R.; Hahn, H.; Lang, H.; Tschierske, C. Chem. Commun. 2004, 1898-1899.
(18) FE switching bent-core materials: (a) Walba, D. M.; Ko¨rblova, E.; Shao,
R.; Maclennan, J. E.; Link, D. R.; Glaser, M. A.; Clark, N. A. Science
2000, 288, 2181-2184. (b) Nakata, M.; Link, D. R.; Araoka, F.; Thisayukta,
J.; Takanishi, Y.; Ishikawa, K.; Watanabe, J.; Takezoe, H. Liq. Cryst. 2001,
28, 1301-1308. (c) Bedel, J. P.; Rouillon, J. C.; Marcerou, J. P.; Laguerre,
M.; Nguyen, H. T.; Achard, M. F. J. Mater. Chem. 2002, 12, 2214-2220.
(d) Amaranatha Reddy, R.; Sadashiva, B. K. J. Mater. Chem. 2002, 12,
2627-2642. (e) Amaranatha Reddy, R.; Sadashiva, B. K. Liq. Cryst. 2003,
30, 1031-1050. (f) Rauch, S.; Bault, P.; Sawade, H.; Heppke, G.; Nair,
G. G.; Jakli, A. Phys. ReV. E 2002, 66, 021706. (g) Kumazawa, K.; Nakata,
M.; Araoka, F.; Takanishi, Y.; Ishikawa, K.; Watanabe, J.; Takezoe, H. J.
Mater. Chem. 2004, 14, 157-164. (h) Amaranatha Reddy, R.; Raghunathan,
V. A.; Sadashiva, B. K. Chem. Mater. 2005, 17, 274-283. (i) Nadasi, H.;
Weissflog, W.; Eremin, A.; Pelzl, G.; Diele, S.; Das, S.; Grande, S. J. Mater.
Chem. 2002, 12, 1316-1324. (j) Bedel, J. P.; Rouillon, J. C.; Marcerou, J.
P.; Nguyen, H. T.; Achard, M. F. Phys. ReV. E 2004, 69, 061702. (k)
Takezoe, H.; et al. J. Am. Chem. Soc. 2005, 127, 11085-11091.
(19) Kajitani, T.; Kohmoto, S.; Yamamoto, M.; Kishikawa, K. Chem. Mater.
2005, 17, 3812-3819.
Results and Discussion
1. Synthesis. The synthesis of the compounds is shortly
outlined in Scheme 2. Accordingly, compounds En-(m-2)Bn
with a terminal double bond were synthesized first,21 and in
the final step, the silicon-containing units were attached by
hydrosilylation reaction, yielding the silylated derivatives Six-
mBn.14,22 Isolation and purification was achieved by repeated
chromatography and crystallization. The experimental proce-
dures and analytical data are described in the Supporting
Information. The characterization of the mesophases was done
(21) Transition temperatures and transition enthalpies of compounds En-(m-
2)Bn are collated in Tables S2 and S3 of the Supporting Information. In
the series of the olefins En-9Bn with increasing chain length, nonswitching
rectangular columnar phases (n ) 4-8; B1 phases, see Figure S4) are
replaced by AF switching polar smectic C phases (n ) 10-22), character-
ized by a single-layer structure without in-plane order and birefringent
textures (SmCPA phases ) B2-type phases). This B1-B2 sequence is usually
observed in the homologous series of bent-core molecules upon elongation
of alkyl chains; see ref 26.
(20) Hough, L. E.; Clark, N. A. Phys. ReV. Lett. 2005, 95, 107802.
(22) Mehl, G. H.; Goodby, J. W. Chem. Ber. 1996, 129, 521-525.
9
J. AM. CHEM. SOC. VOL. 128, NO. 9, 2006 3053