C. S. Burgey et al. / Bioorg. Med. Chem. Lett. 19 (2009) 6368–6372
6371
O
two-stage deprotection with concomitant double bond reduction
gives the desired spironaphthyridinone 40.
Ph3P
O
CO2Me
DBU
Cbz
N
O
Cbz
N
The synthesis of the spiroazaoxindole is shown in Scheme 4.
Alkylation of the SEM-protected 7-azaindole 41 with cis-1,4-di-
chloro-2-butene affords the spirocyclopentene 42. Removal of the
SEM protecting group followed by osmium tetroxide catalyzed
dihydroxylation provides the diol intermediate 44. Periodate oxi-
dative cleavage of the diol, followed by a double reductive amina-
tion affords the spiropiperidine 45.17
DMF
50%
Benzene
85%
34
33
NH2
N
Br
O
O
O
NH
AlMe3
Cbz
N
Cbz
N
N
DCE, 55oC
55%
Br
In summary, utilizing the previously proposed pharmacophore,
two general strategies were outlined for attenuation of metabolism
of the piperidine-based privileged structure within the azepanone
series of CGRP receptor antagonists. Several novel piperidine-based
privileged structures have been developed that maintain compara-
ble potency to the phase 3 clinical compound telcagepant and have
the potential for reduced metabolism. The incorporation of these
novel spirocyclic privileged structures into newer non-azepanone
templates to deliver second-generation CGRP receptor antagonists
with differentiated profiles will be reported in the future.
35
36
Cy2MeN
Pd[P(t-Bu)3]2
NaH
SEM-Cl
O
SEM
N
Cbz
N
N
Dioxane, 50 o
75%
C
THF, 0oC
60%
Br
37
O
N
N
O
1. TFA
2.
Cbz
N
SEM
Cbz
N
NH
NH2
H2N
N
39
38
Acknowledgments
DCM
95%
We thank the mass spectroscopy, and NMR analysis groups for
their valuable assistance.
O
H2, 10% Pd/C
HN
NH
EtOH
80%
N
References and notes
40
Scheme 3.
1. Wackenfors, A.; Jarvius, M.; Ingemansson, R.; Edvinsson, L.; Malmsjo, M. J.
Cardiovasc. Pharmacol. 2004, 45, 476.
2. Durham, P. L.; Russo, A. F. Pharmacol. Ther. 2002, 94, 77; Edvinsson, L. Exp. Opin.
Ther. Targets 2003, 7, 377; Durham, P. L. N. Engl. J. Med. 2004, 350, 1073; Olesen,
J.; Diener, H.-C.; Husstedt, I. W.; Goadsby, P. J.; Hall, D.; Meier, U.; Pollentier, S.;
Lesko, L. N. Engl. J. Med. 2004, 350, 1104; Petersen, K. A.; Birk, S.; Lassen, L. H.;
Krusse, C.; Jonassen, O.; Lesko, L.; Olesen, J. Cephalalgia 2004, 25, 139.
3. Williams, T. M.; Burgey, C. S.; Salvatore, C. A. Prog. Med. Chem. 2009, 47, 1.
4. Paone, D. V.; Shaw, A. W.; Nguyen, D. N.; Burgey, C. S.; Deng, Z. J.; Kane, S. A.;
Koblan, K. S.; Salvatore, C. A.; Hershey, J. C.; Wong, B.; Roller, S. G.; Miller-Stein,
C.; Graham, S. L.; Vacca, J. P.; Williams, T. M. J. Med. Chem. 2007, 50, 5564;
Salvatore, C. A.; Hershey, J. C.; Corcoran, H. A.; Fay, J. F.; Johnston, V. K.; Moore,
E. L.; Mosser, S. D.; Burgey, C. S.; Paone, D. V.; Shaw, A. W.; Graham, S. L.; Vacca,
J. P.; Williams, T. M.; Koblan, K. S.; Kane, S. A. JPET 2008, 324, 416; Burgey, C. S.;
Paone, D. V.; Shaw, A. W.; Deng, J. Z.; Nguyen, D. N.; Potteiger, C. M.; Graham, S.
L.; Vacca, J. P.; Williams, T. M. Org. Lett. 2008, 10, 3235.
to N-benxyloxycarbonyl-4-piperidinone, gives, after in situ cyliza-
tion, product 31.13 Final deprotection and dechlorination under
standard hydrogenolysis conditions gives the piperidine 32.
The synthesis of spironaphthyridinone 40 is summarized in
Scheme 3. Olefination of the 4-ketopiperidine 33 gives the
a
b,
,b-unsaturated ester 34, which can be isomerized to the
c
-unsaturated ester 35 under basic conditions (Scheme 3).14
Trimethylaluminum mediated amidation with 2-amino-3-bromo-
pyridine followed by amide alkylation gives the SEM protected
product 37.15 The key palladium-mediated spirocyclization can
5. Ho, T. W.; Mannix, L.; Fan, X.; Assaid, C.; Furtek, C.; Jones, C.; Lines, C.; Rapoport,
A. Neurology 2008, 70, 1305; Ho, T. W.; Ferrari, M. D.; Dodick, D. W., et al Lancet
2008, 372, 2115.
be effected through the Fu modification of the Heck reaction.16
A
6. Roller, S.; Cui, D.; Laspina, C.; Miller-Stein, C.; Rowe, J.; Wong, B.;
Prueksaritanont, T. Xenobiotica 2009, 39, 33.
7. Burgey, C. S.; Stump, C. A.; Nguyen, D. N.; Deng, J. Z.; Quigley, A. G.; Norton, B.
R.; Bell, I. M.; Mosser, S. D.; Salvatore, C. A.; Rutledge, R. Z.; Kane, S. A.; Koblan,
K. S.; Vacca, J. P.; Graham, S. L.; Williams, T. M. Bioorg. Med. Chem. Lett. 2006, 16,
5052.
8. For the details of these assays, see: Bell, I. M.; Graham, S. L.; Williams, T. M.;
Stump, C. A. WO 2004/087649.
9. Williams, T. M.; Stump, C. A.; Nguyen, D. N.; Quigley, A. G.; Bell, I. M.; Gallichio,
S. N.; Zartman, C. B.; Wan, B.-L.; Kunapuli, P.; Kane, S. A.; Koblan, K. S.; Mallee, J.
J.; Mosser, S. D.; Rutledge, R. Z.; Salvatore, C.; Graham, S. L.; Vacca, J. P. Bioorg.
Med. Chem. Lett. 2006, 16, 2595.
10. For the details of the chemistry, see: Burgey, C. S.; Deng, Z. J.; Potteiger, C.;
Williams, T. M. WO 2006/041830 A2.; Burgey, C. S.; Paone, D. V.; Shaw, A. W.;
Nguyen, D. N.; Deng, Z. J.; Vacca, J. P.; Selnick, H. G.; Williams, T. M.; Potteiger,
C. WO 2006/044504 A2.
O
O
Cs2CO3
DMF
SEM
TFA,
DCM
N
SEM
N
N
Cl
Cl
N
77%
80%
41
42
HO
O
O
OsO4, DCM
NMe3
NH
N
NH
N
HO
O
11. Davies, A. J.; Brands, K. M. J.; Cowden, C. J.; Dolling, U.-H.; Lieberman, D. R.
Tetrahedron Lett. 2004, 45, 1721.
12. Ortho metalation/cyclization attempts without the chlorine group were
unsuccessful.
43
44
13. In situ cyclization via the use of a carbamate protecting group were essential,
as attempted deprotection of amides led to dehydration: for example,
O
1) NaIO4,
EtOH, H2O
HN
NH
N
2) 50 psi H2,
NH4OH, Pd/C
O
N
O
N
Cbz
acid
or
base
OH HN
N
HN
40% for 3 steps
45
N
Cbz
Scheme 4.