§ A suitable single crystal of 2 was covered with paratone and mounted in
the 143 K N2 stream of a Bruker AXS P4/SMART 1000 CCD
chemical exchange process involving mesitylcopper is too slow to
account for the fluxional behaviour observed near room
temperature.
˚
diffractometer equipped with a Mo Ka radiation (l = 0.71073 A) source.
The structure was solved using full matrix least squares on F2. Crystal data
for 2: C96H99Cu9F36N6P2, monoclinic, a = 20.5700(30), b = 21.1510(30), c =
The absorption spectrum for 1 displays an absorbance (lmax) at
373 nm, and the emission spectrum displays a maximum at 418 nm.
The luminescence occurred with a quantum yield (W) of 0.27 in
toluene at 298 K, relative to 9,10-diphenylanthracene (W = 0.90).
This value is slightly lower than the recently reported copper amide
dimer of Peters.15 This reduced luminescence is not surprising,
considering the increased flexibility of 2, and the relatively lesser
steric bulk of the supporting ligand.
˚
28.4010(30) A, a = 90.000(0)u, b = 119.442(8)u, c = 90.000(0)u, V =
3
10761(2) A , Z = 4, Dcalcd = 1.638 g cm23. A total of 101105 reflections
˚
were collected of which 18926 were unique; wR2 = 0.167, R = 0.075. CCDC
292735. For crystallographic data in CIF or other electronic format see
DOI: 10.1039/b517531c
1 B. Bosnich, Inorg. Chem., 1999, 38, 2554–2562.
2 V. W. W. Yam and K. K. W. Lo, Mol. Supramol. Photochem., 1999, 4,
31–112.
Although a few examples of amido complexes of Cu(I) are
known,27–35 the ease by which 2 assembles, and its structural
integrity in solution are remarkable. Most copper amido
complexes adopt dinuclear, trinuclear or tetranuclear structures.
Closely related tripodal silane ligands, which lack the central
phosphine in 1 have also been observed to form anticipated
trinuclear copper complexes with bridging amido ligands.36
Usually, bulky ligands and careful synthetic methodology are
required to synthesize terminal copper–amido bonds.21 We are
currently investigating the reactivity of this complex, to determine
if the terminal amido ligands display the strong nucleophilicity and
basicity common to electron-rich late-transition metals, and the
ability of this ligand to provide polymetallic complexes with other
transition metals.
3 P. C. Ford, E. Cariati and J. Bourassa, Chem. Rev., 1999, 99,
3625–3647.
4 V. W.-W. Yam and K. K.-W. Lo, Chem. Soc. Rev., 1999, 28, 323–334.
5 L. K. Thompson, Coord. Chem. Rev., 2002, 233–234, 193–206.
6 A. W. Frank and G. L. Drake, Jr, J. Org. Chem., 1972, 37, 2752–2755.
7 R. R. Schrock, S. W. Seidel, Y. Schrodi and W. M. Davis,
Organometallics, 1999, 18, 428–437.
8 L. H. Gade, Acc. Chem. Res., 2002, 35, 575–582.
9 L. Turculet and T. D. Tilley, Organometallics, 2002, 21, 3961–3972.
10 L. Jia, E. Ding, A. L. Rheingold and B. Rhatigan, Organometallics,
2000, 19, 963–965.
11 M. D. Fryzuk, Can. J. Chem., 1992, 70, 2839–2845.
12 M. D. Fryzuk, J. B. Love and S. J. Rettig, Chem. Commun., 1996,
2783–2784.
13 M. D. Fryzuk, S. A. Johnson and S. J. Rettig, J. Am. Chem. Soc., 1998,
120, 11024–11025.
14 L.-C. Liang, J.-M. Lin and C.-H. Hung, Organometallics, 2003, 22,
3007–3009.
15 S. B. Harkins and J. C. Peters, J. Am. Chem. Soc., 2005, 127, 2030–2031.
16 P. Pyykko¨, Chem. Rev., 1997, 97, 597–636.
17 P. K. Mehrotra and R. Hoffmann, Inorg. Chem., 1978, 17, 2187–2189.
18 K. M. Merz, Jr. and R. Hoffmann, Inorg. Chem., 1988, 27, 2120–2127.
19 P. Belanzoni, M. Rosi, A. Sgamellotti, E. J. Baerends and C. Floriani,
Chem. Phys. Lett., 1996, 257, 41–48.
Acknowledgement is made to the National Sciences and
Engineering Council (NSERC) of Canada and the Ontario
Research and Development Challenge Fund (University of
Windsor Centre for Catalysis and Materials Research) for their
financial support.
20 H. L. Hermann, G. Boche and P. Schwerdtfeger, Chem.–Eur. J., 2001,
7, 5333–5342.
Notes and references
21 E. D. Blue, A. Davis, D. Conner, T. B. Gunnoe, P. D. Boyle and
P. S. White, J. Am. Chem. Soc., 2003, 125, 9435–9441.
22 L. A. Goj, E. D. Blue, C. Munro-Leighton, T. B. Gunnoe and
J. L. Petersen, Inorg. Chem., 2005, 44, 8647–8649.
23 K. G. Caulton, New J. Chem., 1994, 18, 25–41.
24 J. R. Fulton, A. W. Holland, D. J. Fox and R. G. Bergman, Acc. Chem.
Res., 2002, 35, 44–56.
{ Characterization data for [P(CH2NArCF )3]H3 (1): 1H NMR (C6D6,
3
3
2
298 K, 300 MHz): d 2.55 (dd, JHH = 5.2 Hz, JPH = 5.2 Hz, 6H, CH2),
3.13 (br, 3H, NH), 6.59 (s, 6H, o-H), 7.27 (s, 3H, p-H). 13C{1H} NMR
(C6D6, 298 K, 125.8 MHz): d 39.4 (d, JPC = 12.2 Hz, PCH2), 111.2 (s, o-C),
112.5 (s, p-C), 122.1 (s, m-C), 132.9 (q, J = 32.9 Hz, CF3), 148.9 (d, J =
5.5 Hz, ipso-C). 31P{1H} NMR (C6D6, 121.5 MHz, 298 K): d 232.6 (s).
19F NMR (C6D6, 298 K, 282.48 MHz): d 14.71 (s). Anal. Calc’d for
C27H18F18N3P: C, 42.82; H, 2.40; N, 5.55. Found: C, 43.00; H, 2.49; N,
5.41.
25 M. D. Fryzuk and C. D. Montgomery, Coord. Chem. Rev., 1989, 95,
1–40.
26 H. E. Bryndza and W. Tam, Chem. Rev., 1988, 88, 1163–1188.
27 S. B. Harkins and J. C. Peters, J. Am. Chem. Soc., 2004, 126, 2885–2893.
28 M. Niemeyer, Acta Crystallogr., Sect. E, 2001, 57, m491–m493.
29 T. Tsuda, K. Watanbe, K. Miyata, H. Yamamoto and T. Saegusa,
Inorg. Chem., 1981, 20, 2728–2730.
30 A. M. James, R. K. Laxman, F. R. Fronczek and A. W. Maverick,
Inorg. Chem., 1998, 37, 3785–3791.
31 H. Chen, M. M. Olmstead, S. C. Shoner and P. P. Power, J. Chem. Soc.,
Dalton Trans., 1992, 451–457.
32 H. Link, P. Reiss, S. Chitsaz, H. Pfistner and D. Fenske, Z. Anorg. Allg.
Chem., 2003, 629, 755–768.
33 P. Reib and D. Fenske, Z. Anorg. Allg. Chem., 2000, 626, 2245–2247.
34 H. Eriksson and M. Hakansson, Organometallics, 1997, 16, 4243–4244.
35 S. Gambarotta and M. Bracci, J. Chem. Soc., Dalton Trans., 1987,
1883–1888.
Characterization data for [P(CH2NArCF )3]2Cu9(m-2,4,6-Me3C6H2)3 (2):
3
1H NMR (C7D8, 243 K, 300 MHz) assigned using 1H–1H COSY and
NOESY and identified by the crystal structure atom labels: d 1.75 (s, 3H,
CH3, Mes-p-C71), 2.01 (s, 6H, CH3, Mes-p-C62), 2.20 (s, 6H, CH3, Mes-
o-C63), 2.41 (s, 6H, CH3, Mes-o-C70), 2.63 (s, 6H, CH3, Mes-o-C61), 3.24
2
(overlapping, 4H, CH2-H3a/H2a), 3.51 (d, 2H, JHH = 13.5 Hz, CH2-1a),
3.63 (d, 2H, 2JHH = 13.5 Hz, CH2-1b), 3.78 (d, 2H, 2JHH = 12.5 Hz, CH2-
3b), 4.10 (d, 2H, 2JHH = 12.5 Hz, CH2-2b), 6.15 (s, 2H, terminal N-o-H ),
6.24 (s, 2H, Mes-m-H59), 6.30 (s, 2H, Mes-m-H66), 6.56 (s, 2H, Mes-
m-H57), 6.90 (s, 2H, terminal N-o-H), 7.26 and 7.27 (s, 3H total, bridging
N-p-H and terminal N-p-H), 7.30 (overlapping s, 8H total, bridging
N-o-H), 7.44 (s, 2H, bridging N-p-H). 31P{1H} NMR (C6D6, 300 K,
121.54 MHz): 9.23 (s). 19F NMR (C7D8, 228 K, 282.48 MHz): d 14.78 (s,
6F), 14.80 (s, 6F), 15.20 (br s, 12 F, non-terminal aryl CF3), 15.30 (s, 6F),
15.42 (s, 6F). Anal. Calc’d for C81H66Cu9F36N6P2: C, 39.85; H, 2.73; N,
3.44. Found: C, 39.98; H, 2.50; N, 3.40. UV/VIS: e = 33980 L mol21 cm21
.
36 M. Veith, O. Schutt and V. Huch, Z. Anorg. Allg. Chem., 1999, 625,
1155–1164.
lmax = 373 nm. lemit = 418 nm.
This journal is ß The Royal Society of Chemistry 2006
Chem. Commun., 2006, 1221–1223 | 1223