ACS Medicinal Chemistry Letters
Page 6 of 7
1
2
3
4
5
6
7
8
9
larger compounds in order to increase potency and, more im-
5.
Tomlinson, D. C.; Lamont, F. R.; Shnyder, S. D.;
Knowles, M. A., Fibroblast Growth Factor Receptor 1
Promotes Proliferation and Survival via Activation of the
Mitogen-Activated Protein Kinase Pathway in Bladder
Cancer. Cancer Res. 2009, 69 (11), 4613-4620.
portantly, selectivity for the individual FGFR sub-types.
ASSOCIATED CONTENT
Supporting Information
6.
Ornitz, D. M.; Itoh, N., The Fibroblast Growth
Factor signaling pathway. Wires Dev Biol 2015, 4 (3), 215-
The Supporting Information is available free of charge on the ACS
Publications website.
Current FGFR Inhibitors. Synthetic routes. All experimental details
– general procedures and instrumentation, general methods, com-
pound characterisation, 1H NMR and 13C NMR spectra for all com-
pounds. FRET-based Z’ lyte assay details – assay conditions, IC50
curves. Computational details – SPROUT, docking models (PDF).
266.
7.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Nakanishi, Y.; Akiyama, N.; Tsukaguchi, T.; Fujii,
T.; Sakata, K.; Sase, H.; Isobe, T.; Morikami, K.; Shindoh,
H.; Mio, T.; Ebiike, H.; Taka, N.; Aoki, Y.; Ishii, N., The
Fibroblast Growth Factor Receptor Genetic Status as a
Potential Predictor of the Sensitivity to CH5183284/Debio
1347, a Novel Selective FGFR Inhibitor. Mol Cancer Ther
2014, 13 (11), 2547-2558.
AUTHOR INFORMATION
Corresponding Author
8.
Simmons, K. J.; Chopra, I.; Fishwick, C. W. G.,
Structure-based discovery of antibacterial drugs. Nat Rev
Microbiol 2010, 8 (7), 501-510.
9.
strategy for practical lead identification. Med Res Rev 2003,
23 (5), 606-632.
10.
Showalter, R.; Pelletier, L. A.; Lewis, C.; Tucker, K.;
Moomaw, E.; Parge, H. E.; Villafranca, J. E., Design,
Synthesis and X-Ray Crystallographic Studies of Novel
FKBP-12 Ligands. Bioorg. Med. Chem. Lett. 1995, 5 (15),
1719-1724.
*Colin Fishwick - email: C.W.G.Fishwick@leeds.ac.uk. Address:
School of Chemistry, University of Leeds, Leeds, LS2 9JT, UK
Honma, T., Recent advances in De novo design
Author Contributions
The manuscript was written through contributions of L.D. Turner,
M.A. Knowles and C.W.G. Fishwick. M.A. Knowles and C.W.G.
Fishwick provided supervisory support throughout this work. Pro-
ject development and experimental work was carried out princi-
pally by L.D. Turner. ‡These authors contributed equally through
experimental lab work. All authors have given approval to the fi-
nal version of the manuscript.
Babine, R. E.; Bleckman, T. M.; Kissinger, C. R.;
Funding Sources
11.
Iwata, Y.; Naito, S.; Itai, A.; Miyamoto, S., Protein
Medical research council-doctoral training grant.
structure-based de novo design and synthesis of aldose
reductase inhibitors. Drug Des Discov 2001, 17 (4), 349-59.
12.
Williams, P., SPROUT - A Program for Structure
Generation. J. Comput.-Aided Mol. Des. 1993, 7 (2), 127-
153.
ACKNOWLEDGMENT
The authors thank Dr. Martin McPhillie, Medical Research Council
(MRC) and Life Technologies Ltd.
Gillet, V.; Johnson, A. P.; Mata, P.; Sike, S.;
ABBREVIATIONS
13.
Gillet, V. J.; Newell, W.; Mata, P.; Myatt, G.; Sike,
ATP, adenosine triphosphate; FGFR, fibroblast growth factor re-
ceptor; FRET, fluorescence resonance energy transfer; HTS, high-
throughput screening; LE, ligand efficiency; SAR, structure-activ-
ity relationship; SBDD, structure-based drug design; SI, Supple-
mentary Information; TK, tyrosine kinase.
S.; Zsoldos, Z.; Johnson, A. P., SPROUT - Recent
Developments in the De-Novo Design of Molecules. J.
Chem. Inf. Comput. Sci. 1994, 34 (1), 207-217.
14.
DeLano, W. L., The PyMOL molecular graphics
system. 2002.
15.
Small-Molecule Drug Discovery Suite 2015-4:
REFERENCES
Glide, version 6.9, Schrödinger, LLC, New York, NY, 2015.
1.
Eswarakumar, V. P.; Lax, I.; Schlessinger, J.,
16.
Life Technologies, Paisley, Scotland, 2015.
17. Liu, J.; Peng, X.; Dai, Y.; Zhang, W.; Ren, S. M.;
Ai, J.; Geng, M. Y.; Li, Y. X., Design, synthesis and
biological evaluation of novel FGFR inhibitors bearing an
indazole scaffold. Org Biomol Chem 2015, 13 (28), 7643-
7654.
Z'-Lyte® Screening Protocol and AssayConditions.
Cellular signaling by fibroblast growth factor receptors.
Cytokine Growth Factor Rev. 2005, 16 (2), 139-149.
2.
di Martino, E.; Tomlinson, D. C.; Knowles, M. A.,
A Decade of FGF Receptor Research in Bladder Cancer:
Past, Present, and Future Challenges. Adv Urol 2012, 2012,
429213.
3.
van Rhijn, B. W. G.; Montironi, R.; Zwarthoff, E.
18.
Schultes, S.; de Graaf, C.; Haaksma, E. E. J.; de
C.; Jobsis, A. C.; van der Kwast, T. H., Frequent FGFR3
mutations in urothelial papilloma. J Pathol 2002, 198 (2),
245-251.
Esch, I. J. P.; Leurs, R.; Krämer, O., Ligand efficiency as a
guide in fragment hit selection and optimization. Drug
Discov Today: Technologies 2010, 7 (3), e157-e162.
4.
Tomlinson, D. C.; Baldo, O.; Hamden, P.;
19.
Lee, C. Y.; Ahn, S. J.; Cheon, C. H.,
Knowles, M. A., FGFR3 protein expression and its
relationship to mutation status and prognostic variables in
bladder cancer. J Pathol 2007, 213 (1), 91-98.
Protodeboronation of ortho- and para-Phenol Boronic Acids
and Application to ortho and meta Functionalization of
Phenols Using Boronic Acids as Blocking and Directing
Groups. J Org Chem 2013, 78 (23), 12154-12160.
ACS Paragon Plus Environment