Page 5 of 6
ACS Medicinal Chemistry Letters
15. Xu, Y. Y.; Li, S. N.; Yu, G. J.; Hu, Q. H.; Li, H. Q., Discovery
Notes
of novel 4ꢀanilinoquinazoline derivatives as potent inhibitors of
epidermal growth factor receptor with antitumor activity. Bioorg.
Med. Chem. 2013, 21, 6084ꢀ6091.
16. Zwaagstra, M. l. E.; Schoenmakers, S. H. H. F.; Nederkoorn, P.
H. J.; Gelens, E.; Timmerman, H.; Zhang, M.ꢀQ., Development of a
threeꢀdimensional CysLT1 (LTD4) antagonist model with an
incorporated amino acid residue from the receptor. J. Med. Chem.
1998, 41, 1439ꢀ1445.
17. von Sprecher, A.; Beck, A.; Gerspacher, M.; Sallmann, A.;
Anderson, G. P.; Subramanian, N.; Niederhauser, U.; Bray, M. A.,
Strategies in the design of peptidoleukotriene antagonists. J. Lipid
Mediators. 1993, 6, 265ꢀ273.
18. Dong, X.; Wang, L.; Huang, X.; Liu, T.; Wei, E.; Du, L.; Yang,
B.; Hu, Y., Pharmacophore identification, synthesis, and biological
evaluation of carboxylated chalcone derivatives as CysLT1
antagonists. Bioorg. Med. Chem. 2010, 18, 5519ꢀ5527.
19. Zhang, M.ꢀQ.; Zwaagstra, M. E., Structural requirements for
leukotriene CysLT1 receptor ligands. Curr. Med. Chem. 1997, 4, 229ꢀ
246.
20. Fregonese, L.; Silvestri, M.; Sabatini, F.; Rossi, G. A., Cysteinyl
leukotrienes induce human eosinophil locomotion and adhesion
molecule expression via a CysLT1 receptorꢀmediated mechanism.
Clin. Exp. Allergy 2002, 32, 745ꢀ750.
21. Woszczek, G.; Chen, L.ꢀY.; Nagineni, S.; Kern, S.; Barb, J.;
Munson, P. J.; Logun, C.; Danner, R. L.; Shelhamer, J. H.,
Leukotriene D4 induces gene expression in human monocytes through
cysteinyl leukotriene type I receptor. The Journal of allergy and
clinical immunology. 2008, 121, 215ꢀ221.
1
2
3
4
5
6
7
8
The authors declare no competing financial interest.
REFERENCES
1. Bäck, M., Functional characteristics of cysteinylꢀleukotriene
receptor subtypes. Life Sci. 2002, 71, 611ꢀ622.
2. Capra, V.; Thompson, M. D.; Sala, A.; Cole, D. E.; Folco, G.;
Rovati, G. E., Cysteinylꢀleukotrienes and their receptors in asthma
and other inflammatory diseases: critical update and emerging trends.
Med. Res. Rev. 2007, 27, 469ꢀ572.
3. PetersꢀGolden, M.; William R. Henderson, J., Mechanisms of
disease Leukotrienes. The New England Journal of Medicine 2007,
357, 1841ꢀ1852.
4. Lynch, K. R.; O’Neill, G. P.; Liu, Q.; Im, D. S.; Sawyer, N.;
Metters, K. M.; Coulombe, N.; Abramovitz, M.; Figueroa, D. J.;
Zeng, Z.; Conolly, B. M.; Bai, C.; Austin, C. P.; Chateauneuf, A.;
Stocco, R.; Greig, G. M.; Kargman, S.; Hooks, S. B.; Hosfield, E.;
Williams, D. L., Jr.;; FordꢀHutchinson, A. W.; Caskey, C. T.; Evans,
J. F., Characterization of the human cysteinyl leukotriene CysLT1
receptor. Nature 1999, 399, 789ꢀ793.
5. Heise, C. E.; O’Dowd, B. F.; Figueroa, D. J.; Sawyer, N.;
Nguyen, T.; Im, D.ꢀS.; Stocco, R.; Bellefeuille, J. N.; Abramovitz,
M.; Cheng, R.; Williams, D. L., Jr.; Zeng, Z.; Liu, Q.; Ma, L.;
Clements, M. K.; Coulombe, N.; Liu, Y.; Austin, C. P.; George, S. R.;
O’Neill, G. P.; Metters, K. M.; Lynch, K. R.; Evans, J. F.,
Characterization of the human cysteinyl leukotriene 2 receptor. J.
Biol. Chem. 2000, 275, 30531ꢀ30536.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
6. Singh, R. K.; Tandon, R.; Dastidar, S. G.; Ray, A., A review on
leukotrienes and their receptors with reference to asthma. J. Asthma
2013, 50, 922ꢀ931.
7. Sekioka, T.; Kadode, M.; Fujii, M.; Kawabata, K.; Abe, T.;
Horiba, M.; Kohno, S.; Nabe, T., Expression of CysLT2 receptors in
asthma lung and their possible role in bronchoconstriction. Allergol.
Int. 2015, 64, 351ꢀ358.
8. Wunder, F.; Tinel, H.; Kast, R.; Geerts, A.; Becker, E. M.;
Kolkhof, P.; Hütter, J.; Ergüden, J.; Härter, M., Pharmacological
characterization of the first potent and selective antagonist at the
cysteinyl leukotriene 2 (CysLT2) receptor. Br. J. Pharmacol. 2010,
160, 399ꢀ409.
9. Ni, N. C.; Yan, D.; Ballantyne, L. L.; BarajasꢀEspinosa, A.;
St.Amand, T.; Pratt, D. A.; Funk, C. D., A selective cysteinyl
leukotriene
receptor
2
antagonist
blocks
myocardial
ischemia/reperfusion injury and vascular permeability in mice. J.
Pharmacol. Exp. Ther. 2011, 339, 768ꢀ778.
10. Wang, L.; Du, C.; Lv, J.; Wei, W.; Cui, Y.; Xie, X.,
Antiasthmatic drugs targeting the cysteinyl leukotriene receptor 1
alleviate central nervous system inflammatory cell infiltration and
pathogenesis of experimental autoimmune encephalomyelitis. J.
Immunol. 2011, 187, 2336ꢀ2345.
11. Marschallinger, J.; Schäffner, I.; Klein, B.; Gelfert, R.; Rivera,
F. J.; Illes, S.; Grassner, L.; Janssen, M.; Rotheneichner, P.;
Schmuckermair, C.; Coras, R.; Boccazzi, M.; Chishty, M.; Lagler, F.
B.; Renic, M.; Bauer, H.ꢀC.; Singewald, N.; Blümcke, I.; Bogdahn,
U.; CouillardꢀDespres, S.; Lie, D. C.; Abbracchio, M. P.; Aigner, L.,
Structural and functional rejuvenation of the aged brain by an
approved antiꢀasthmatic drug. Nat. Commun. 2015, 6, 1ꢀ16.
12. Kose, M.; Ritter, K.; Thiemke, K.; Gillard, M.; Kostenis, E.;
Muller, C. E., Development of [3H]2ꢀCarboxyꢀ4,6ꢀdichloroꢀ1Hꢀ
indoleꢀ3ꢀpropionic Acid ([3H]PSBꢀ12150):
A Useful Tool for
Studying GPR17. ACS Med. Chem. Lett. 2014, 5, 326ꢀ30.
13. Di Fabio, R.; Capelli, A. M.; Conti, N.; Cugola, A.; Donati, D.;
Feriani, A.; Gastaldi, P.; Gaviraghi, G.; Hewkin, C. T.; Micheli, F.;
Missio, A.; Mugnaini, M.; Pecunioso, A.; Quaglia, A. M.; Ratti, E.;
Rossi, L.; Tedesco, G.; Trist, D. G.; Reggiani, A., Substituted indoleꢀ
2ꢀcarboxylates as in vivo potent antagonists acting as the strychnineꢀ
insensitive glycine binding site. J. Med. Chem. 1997, 40, 841ꢀ850.
14. Jones, G. B.; Chapman, B. J., Decarboxylation of indoleꢀ2ꢀ
carboxylic acids: improved procedures. J. Org. Chem. 1993, 58,
5558ꢀ5559.
ACS Paragon Plus Environment