N. D. Buezo et al. / Tetrahedron Letters 47 (2006) 2489–2492
2491
of the readily available Grignard reagents to generate
References and notes
the alkylcopper makes these the reagents of choice com-
pared with their alkyllithium counterparts. The stereo-
selectivity of the reaction is dictated by purely steric
factors, trans attack by the organometallic species
taking place preferentially. The trans diastereoisomer
is obtained with higher stereoselectivity when the
organocopper reagent is bulkier (compare entry 1 with
2–4 and entry 5 with 6 and 7). However, the nature of
substituent R1 is not so important in the stereochemical
outcome of the reaction when the organocopper reagent
is of the aryl type (compare entries 2–4 with 6 and
7). Nonetheless, it is notably more important when an
alkyl organocopper reagent is used (compare entry 1
with 5).
1. A search on the pyrrolidine moiety in the MDDR
database gave over 14,000 hits. The database is available
from MDL Information Systems Inc., San Leandro, CA
94577 and contains biologically active compounds in the
early stages of drug development.
2. See, for example: (a) Whitesell, J. K. Chem. Rev. 1989, 89,
1581–1590; (b) Tomioka, K. Synthesis 1990, 7, 541–550;
(c) Noyori, R.; Kitamura, M. Angew. Chem., Int. Ed. Engl.
1991, 30, 49–69.
3. Formation of N–C2 bond: (a) Pal, K.; Behnke, M. L.;
Tong, L. Tetrahedron Lett. 1993, 34, 6205–6208; (b)
Giovannini, R.; Petrini, M. Synlett 1996, 10, 1001–1003;
(c) Salmon, A.; Carboni, B. J. Organomet. Chem. 1998,
567, 31–37; (d) Miura, K.; Hondo, T.; Nakagawa, T.;
Takahashi, T.; Hosomi, A. Org. Lett. 2000, 2, 385–388; (e)
´
Guindon, Y.; Guerin, B.; Landry, S. R. Org. Lett. 2001, 3,
In summary, we have described a mild, versatile, and
efficient method for the preparation of 2,3-trans-disub-
stituted pyrrolidines by the intermolecular addition of
organocopper nucleophiles to N-acyliminium ions gen-
erated in situ from the corresponding 3-substituted lac-
tams. The overall synthetic transformation from the
corresponding 3-substituted lactam (easily accessible)
is very efficient and straightforward. Four reactions
are carried out with only one final purification.
2293–2296; Formation of N–C5 bond: (f) Tohyama, Y.;
Tanino, K.; Kuwajima, I. J. Org. Chem. 1994, 59, 518–
519; (g) Yee, N. K. Tetrahedron Lett. 1997, 38, 5091–5094;
(h) Billet, M.; Klotz, P.; Mann, A. Tetrahedron Lett. 2001,
42, 631–634; Formation of C2–C3 bond: (i) Hiemstra, H.;
Fortgens, H. P.; Speckamp, N. W. Tetrahedron Lett. 1985,
26, 3155–3158; (j) Kercher, T.; Livinghouse, T. J. Am.
Chem. Soc. 1996, 118, 4200–4201; (k) Aurrecoechea, J. M.;
´
Fernandez, A.; Gorgojo, J. M.; Saornil, C. Tetrahedron
1999, 55, 7345–7362; (l) Katrizky, A. R.; Feng, D.; Qi, M.;
Aurrecoechea, J. M.; Suero, R.; Aurrekoetxea, N. J. Org.
Chem. 1999, 64, 3335–3338; (m) Duncan, D.; Livinghouse,
T. J. Org. Chem. 2001, 66, 5237–5240; Formation of C3–
3. Typical experimental procedure
´
C4 bond: (n) Pedrosa, R.; Andres, C.; Duque-Soladana, J.
To a stirred suspension of CuBrÆMe2S (4 mmol) in dry
ether (8 mL), at À40 ꢁC under N2, was added dropwise
a solution of the corresponding Grignard reagent
(4 mmol). After stirring for 45 min, the mixture was
cooled to À78 ꢁC, and BF3ÆOEt2 (4 mmol) was added
dropwise. After 30 min, a solution of 7a or 7b (1 mmol)
in dry ether (1.5 mL) was added dropwise. The mixture
was stirred for 15 min and allowed to reach room tem-
perature over a period of 3 h. After 1 h at room tempera-
ture, the reaction was quenched with a mixture of an
aqueous saturated NH4Cl solution and concentrated
NH3 (1:1) (5 mL) and the mixture stirred for 1 h. The
organic layer was separated, and the aqueous layer
was extracted with ether (3 · 10 mL). The combined
organic extracts were washed with saturated aqueous
NaHCO3 solution (5 mL), dried over anhydrous
Na2SO4, and concentrated under reduced pressure.
The crude product was dissolved in CH2Cl2 (20 mL)
and TFA (10 mmol) was added. The resulting solution
was stirred overnight. The reaction mixture was concen-
trated to dryness and the residue filtered through an
ion-exchange column. The trans:cis diastereomeric ratio
´
P.; Mendiguchıa, P. Eur. J. Org. Chem. 2000, 3727–3730;
Simultaneous multiple bonds formation: (o) Pearson, W.
H.; Szura, D. P.; Harter, W. G. Tetrahedron Lett. 1988,
29, 761–764; (p) Harris, M. C. J.; Whitby, R. J.; Blagg, J.
Tetrahedron Lett. 1995, 36, 4287–4290; (q) Aurrecoechea,
´
J. M.; Fernandez-Acebes, A. Synlett 1996, 1, 39–42; (r)
Garner, P.; Dogan, O.; Youngs, W. J.; Kennedy, V. O.;
Protasiewicz, J.; Zainewski, R. Tetrahedron 2001, 57, 71–
85; (s) Bertozzi, F.; Gustafsson, M.; Olsson, R. Org. Lett.
2002, 4, 3147–3150.
4. (a) Hiemstra, H.; Speckamp, W. N. In Comprehensive
Organic Synthesis; Trost, B. M., Fleming, I., Eds.;
Pergamon: Oxford, 1991; Vol. 2, Chapter 4.5; (b) Marya-
noff, B. E.; Zhang, H. C.; Cohen, J. H.; Turchi, I. J.;
Maryanoff, C. A. Chem. Rev. 2004, 104, 1431–1628, and
reference cited therein.
5. (a) Shono, T.; Matsumura, Y.; Tsubata, K. J. Am. Chem.
Soc. 1981, 103, 1172–1176; (b) Shono, T. Tetrahedron
1984, 40, 811–850.
6. Langlois, N.; Rojas, A. Tetrahedron Lett. 1993, 34, 2477–
2480.
7. (a) Pichon, M.; Figadere, B.; Cave, A. Tetrahedron Lett.
1996, 37, 7963–7966; (b) Nicolau, K. C.; Namoto, K.
Chem. Commun. 1998, 1757–1758; (c) Suga, S.; Okajima,
M.; Yoshida, J. Tetrahedron Lett. 2001, 42, 2173–2176; (d)
Peroche, S.; Remuson, R.; Gelas-Mialhe, Y.; Gramain, J.
C. Tetrahedron Lett. 2001, 42, 4617–4619; (e) Coleman, R.
S.; Chen, W. Org. Lett. 2001, 3, 1141–1144.
1
was determined by H NMR from this mixture.14
Chromatographic separation of the major diastereoiso-
mer (except in the isobutyl cases, entries 2 and 5) yielded
final products that were fully characterized.15
8. For selected examples: (a) Asada, S.; Kato, M.; Asai, K.;
Ineyama, T.; Nishi, S.; Izawa, K.; Shono, T. J. Chem.
Soc., Chem. Commun. 1989, 486–488; (b) Collado, I.;
Ezquerra, J.; Pedregal, C. J. Org. Chem. 1995, 60, 5011–
5015; (c) Chiesa, M. V.; Mazoni, L.; Scolastico, C. Synlett
1996, 441–443; (d) Speckamp, W. N.; Moolenaar, M. J.
Tetrahedron 2000, 56, 3817–3856; (e) Harris, P. W. R.;
Brimble, M. A.; Gluckman, P. D. Org. Lett. 2003, 5, 1847–
1850.
Acknowledgments
We are grateful to O. de Frutos for providing 5b com-
pound and J. F. Espinosa and H. Broughton for their
useful comments.