Page 3 of 5
ChemComm
35
In summary, we have presented the first transition metal-
a
DOI: 10.1039/C5CC02085A
high yielding access to a selection of aroylphosphonates under
mild reaction conditions, thus allowing for a broad substrate
40 scope. The effectiveness of this transformation, even under a near
stoichiometric amount of carbon monoxide, also allows for
isotopic acyl labelling, as demonstrated herein by the
incorporation of 13CO. Consequently, we believe this
methodology provides an attractive alternative to the classically
45 employed acyl substitution of acid chlorides.
The financial support from the Danish National Research
Foundation, (grant no. DNRF118), the Villum Foundation, the
Danish Council for Independent Research: Technology and
Production Sciences, the Lundbeck Foundation, the Carlsberg
50 Foundation, Aarhus University and the Chinese Scholarship
Council (grants to Z. L. and H. Y.) are greatly appreciated.
Scheme 4. Utilisation of the aroylphosphonate products. Reaction
conditions: (a) DAST (4.0 equiv), 0 °C to r. t. (b) L-proline (0.5 equiv),
acetone, rt, 24 h.(c) NH2NMe2 (1.4 equiv), AcOH, rt, 2 h. (d) PhCHO (1.1
5 equiv), KCN (0.3 equiv), DMF, rt, 6 h. (e) PMe3 (1.0 equiv), THF, rt, 2 h.
Hydrazine also proved reactive towards 3g, producing the
hydrazone derivative 6 in good yield.20 Aroylphosphonates can
be converted into aroyl nucleophiles by treatment with cyanide,
and after phosphonate-phosphate rearrangement, the formed
10 carbanion can be trapped to form for example cross-benzoin
products like 7.21 Furthermore, the carbonyl group of
aroylphosphonates can be chemoselectively reduced under mild
conditions by treatment with PMe3, thus affording benzylic
alcohols like 8.22
Notes and references
1
(a) Engel, R. Handbook of Organophosphorus Chemistry; Marcel Dekker:
New York, 1992. (b) The Chemistry of Organophosphorus Compounds,
Hartley, F. R., Ed.; Wiley: New York, 1996; Vol. 4. (c) Quin, L. D. A
Guide to Organophosphorus Chemistry; Wiley: New York, 2000.
55
60
65
70
15
Finally, a plausible mechanism for this Pd-catalyzed
2
(a) O. Berger, C. Petit, E. L. Deal and J. L. Montchamp, Adv. Synth.
Catal., 2013, 355, 1361-1373. (b) B. Q. Xiong, M. Li, Y. X. Liu, Y. B.
Zhou, C. Q. Zhao, M. Goto, S. F. Yin and L. B. Han, Adv. Synth. Catal.,
2014, 356, 781-794. (c) K. Xu, F. Yang, G. D. Zhang and Y. J. Wu,
Green Chem., 2013, 15, 1055-1060. (d) A. J. Bloomfield and S. B. Herzon,
Org.Lett., 2012, 14, 4370-4373. (e) C. Huang, X. Tang, H. A. Fu, Y. Y.
Jiang and Y. F. Zhao, J. Org. Chem., 2006, 71, 5020-5022. (f) H. H. Rao,
Y. Jin, H. Fu, Y. Y. Jiang and Y. F. Zhao, Chem-Eur. J., 2006, 12, 3636-
3646. (g) Y. Matano, K. Matsumoto, Y. Terasaka, H. Hotta, Y. Araki, O.
Ito, M. Shiro, T. Sasamori, N. Tokitoh and H. Imahori, Chem.-Eur. J.,
2007, 13, 891-901. (h) N. T. McDougal, J. Streuff, H. Mukherjee, S. C.
Virgil and B. M. Stoltz, Tetrahedron Lett., 2010, 51, 5550-5554. (i) M.
Toffano, C. Dobrota and J. C. Fiaud, Eur. J. Org. Chem., 2006, 650-656.
(j) E. L. Deal, C. Petit and J. L. Montchamp, Org.Lett., 2011, 13, 3270-
3273. (k) M. Kalek, M. Jezowska and J. Stawinski, Adv. Synth.Catal.,
2009, 351, 3207-3216. For a review, see: (l) F. M. J. Tappe, V. T. Trepohl
and M. Oestreich, Synthesis, 2010, 3037-3062. (m) E. Jablonkai and G.
Keglevich, Curr. Org. Synth., 2014, 11, 429-453.
carbonylative approach towards aroylphosphonates is illustrated
in Figure 1. Initially, oxidative addition of palladium(0) into the
(hetero)aryl bromide (or triflate) bond, coordination of carbon
monoxide and migratory insertion affords the palladium-acyl
20 complex A. Diorgano H-phosphonates B are in equilibrium with
their corresponding diorganophosphites C, and coordination of
this P(III) reagent to palladium, affords either O-bound complex
D or P-bound complex E. These are like to be equilibrium as
demonstrated for enolates.23 Subsequent deprotonation of E with
25 the mild amine base used, would provide palladium(II) complex
F, which upon reductive elimination forms the desired product
while regenerating the ligated palladium(0). Observation of
carboxylic acid as the major side-product may be rationalised by
deprotonation of the O-bound complex D, followed by reductive
30 elimination to form G. Upon exposure to moisture, G is easily
hydrolysed into the corresponding benzoic acid.
75 3
(a) Corbridge, D. E. C. Phosphorus: An Outline of Its Chemistry,
Biochemistry and Uses, 5th ed.; Elsevier: Amsterdam, 1995. (b)
Aminophosphonic and Aminophosphinic Acids: Chemistry and
Biological Activity; Kukhar, V. P., Hudson, H. R., Eds.; Wiley:
Chichester, 2000. (c) E. Soulier, J. C. Clement, J. J. Yaouanc and H. des
Abbayes, Tetrahedron Lett., 1998, 39, 4291-4294. (d) L. Devel, V.
Rogakos, A. David, A. Makaritis, F. Beau, P. Cuniasse, A. Yiotakis and V.
Dive, J. Biol. Chem., 2006, 281, 11152-11160. (e) F. R. Alexandre, A.
Amador, S. Bot, C. Caillet, T. Convard, J. Jakubik, C. Musiu, B. Poddesu,
L. Vargiu, M. Liuzzi, A. Roland, M. Seifer, D. Standring, R. Storer and C.
B. Dousson, J. Med. Chem., 2011, 54, 392-395.
O
Ar Br
80
OR
OR
Ar
P
PdL2
O
O
P
P
Ar
Br
P
P
Ar
OR
OR
Pd
Pd
Et3N HBr
85
P
O
OR
P
4
(a) M. Sekine, M. Satoh, H. Yamagata and T. Hata, J. Org. Chem., 1980,
45, 4162-4167. (b) Y. Huang, F. Berthiol, B. Stegink, M. M. Pollard and
A. J. Minnaard, Adv. Synth.Catal., 2009, 351, 1423-1430. (c) M. Sprecher
and D. Kost, J. Am. Chem. Soc., 1994, 116, 1016-1026.
O
F
CO
Hydrolysis
Ar
O
OR
Et3N HBr
Et3N
G
O
90 5
For selected examples of carbonylative C–H cross coupling: (a) H.
Neumann, R. Kadyrov, X. F. Wu and M. Beller, Chem.-Asian J., 2012, 7,
2213-2216. (b) W. Y. Hao, G. D. Ding and M. Z. Cai, Catal. Commun.,
2014, 51, 53-57. (c) S. Korsager, R. H. Taaning, A. T. Lindhardt and T.
Skrydstrup, J. Org. Chem., 2013, 78, 6112-6120. (d) J. W. Jiang, P. P.
Wang and M. Z. Cai, J. Chem. Res., 2014, 218-222.
Ar
OH
Et3N
O
O
Br
P
P
P
Ar
Ar
Pd
Pd
A
P
Br
P
OR
HO
Br
95
O
OR
6
For selected examples of carbonylative C–C cross coupling: (a) Z. H.
Zhang, Y. Y. Liu, M. X. Gong, X. K. Zhao, Y. Zhang and J. B. Wang,
Angew. Chem. Int. Edit., 2010, 49, 1139-1142. (b) A. Park and S. Lee,
Org. Lett., 2012, 14, 1118-1121. (c) Z. Lian, S. D. Friis and T.
Skrydstrup, Angew. Chem. Int. Ed., 2014, 53, 9582-9586. (d) K. T.
Neumann, S. R. Laursen, A. T. Lindhardt, B. Bang-Andersen and T.
Skrydstrup, Org. Lett., 2014, 16, 2216-2219. (e) K. M. Bjerglund, T.
Skrydstrup and G. A. Molander, Org. Lett., 2014, 16, 1888-1891. (f) S.
Korsager, D. U. Nielsen, R. H. Taaning and T. Skrydstrup, Angew. Chem.
P
P
OR
OR
Ar
P
E
Pd
C
B
HO P
P(III)
O
OR
H
O
D
OR
P
P(V)
100
RO
RO
H
Figure1. Proposed mechanism of carbonylative aroylphosphonate
synthesis.
This journal is © The Royal Society of Chemistry [year]
Journal Name, [year], [vol], 00–00 |3