C O M M U N I C A T I O N S
Scheme 4. Synthesis of Sulfone 4a
The completion of the macrolactone required the extension at
C3 to the dienoate. To this end, reductive removal of the pivaloate
preceded oxidation of the allylic alcohol with manganese dioxide
and Horner-Wadsworth-Emmons olefination to deliver the di-
enoate 21. Hydrolysis of ester 21 followed by Yamaguchi macro-
lactonization20 gave the desired macrocycle 22. Selective depro-
tection of the primary silyl ether and oxidation of the resultant
alcohol provided aldehyde 23 in 70% yield, ready to be coupled
with the C19-C26 fragment 4 via a Julia reaction.
Julia olefination21 between aldehyde 23 and sulfone 4 provided
exclusively the E-olefin 24 (Scheme 5). Global deprotection by
the action of H2SiF622 gave FD-891 in 90% yield. The spectral data
of synthetic FD-891 were consistent in all respects with those
reported for the natural product.1,5,6
a Conditions: (a) i-Bu2AlH, CH2Cl2, -78 °C, 84%; (b) thioimide 8,
TiCl4, (-)-sparteine, NMP, CH2Cl2, -78 to 0 °C, then add aldehyde, 87%
(dr >20:1); (c) CH3N(OCH3)H‚HCl, imidazole, CH2Cl2, 78%; (d) MOMCl,
i-Pr2NEt, DMF, 50 °C, 87%; (e) MeMgCl, Et2O, 0 °C, 97%; (f) NaBH4,
CeCl3‚7(H2O), MeOH, 0 °C, 75% 18 + 15% C25 isomer which was
recycled; (g) NaH, MeI, THF, 0 °C to room temperature, 81%; (h) HCl
(concentrated), MeOH, 78%; (i) 2,2-dimethoxypropane, p-TSA, 88%; (j)
O3, CH2Cl2, MeOH, -78 °C, then NaBH4 -78 to 25 °C, 81%; (k) DIAD,
2-mercaptobenzothiazole, PPh3, CH2Cl2, 93%; (l) H2O2 30%, (NH4)6Mo7O24‚
4H2O, EtOH, 89%.
In conclusion, we have completed the first total synthesis of the
macrolide FD-891 in 21 steps (longest linear sequence). The
versatile aldol reaction of N-acylthiazolidinethione 8 was used to
create 8 of the 12 stereocenters with the same enantiomer of the
chiral auxiliary.
Acknowledgment. This work was supported by a research grant
from The National Cancer Institute (CA63572). We are grateful to
Scheme 5. Completion of FD-891a
1
professor T. Eguchi for providing authentic H and 13C spectra of
the natural product.
Supporting Information Available: Experimental procedures, as
well as 1H and 13C NMR spectra for all new compounds, and synthetic
FD-891. This material is available free of charge via the Internet at
References
(1) (a) Seki-Asano, M.; Okazaki, T.; Yamagishi, M.; Sakai, N.; Hanada, K.;
Mizoue, K. J. Antibiot. 1994, 47, 1226. (b) Seki-Asano, M.; Tsuchida,
Y.; Hanada, K.; Mizoue, K. J. Antibiot. 1994, 47, 1234.
(2) (a) Muroi, M.; Shiragami, N.; Nagao, K.; Yamasaki, M.; Takatsuki, A.
Cell Struct. Funct. 1993, 18, 139. (b) Drose, S.; Bindseil, K. U.; Bowman,
E. J.; Siebers, A.; Zeeck, A.; Altendork, K. Biochemistry 1993, 32, 3902.
(3) Kataoka, T.; Shinohara, N.; Takayama, H.; Takaku, K.; Kondo, S.;
Yonehara, S.; Nagai, K. J. Immunol. 1996, 156, 3678.
(4) Kataoka, T.; Yamada, A.; Bando, M.; Honna, T.; Mizoue, K.; Nagai, K.
Immunology 2000, 100, 170.
(5) Egushi, T.; Kobayashi, K.; Uekusa, H.; Ohashi, Y.; Mizoue, K.; Mat-
sushima, Y.; Kakinuma, K. Org. Lett. 2002, 4, 3383.
(6) Egushi, T.; Kamamoto, K.; Mizoue, K.; Kakinuma, K. J. Antibiot. 2004,
57, 156.
(7) Review: Dai, M.; Guan, Y. C.; Jin, J. Curr. Med. Chem. 2005, 21, 1947.
(8) (a) Murga, J.; Garcia-Fortanet, J.; Carda, M.; Marco, J. A. Synlett 2004,
2830. (b) Murga, J.; Garcia-Fortanet, J.; Carda, M.; Marco, J. A.
Tetrahedron Lett. 2004, 45, 7499. (c) Hang, S. S.; Xu, J.; Loh, T. P.
Tetrahedron Lett. 2003, 27, 4997.
a Conditions: (a) Cl2(Cy3P)(IMes)RudCHPh, CH2Cl2, 40 °C, 68% +
10% Z-isomer; (b) i-Bu2AlH, CH2Cl2, -78 °C, 85%; (c) MnO2, CH2Cl2,
40 °C, then BuLi, Ph3P(O)C(CH3)CO2Me, THF, 0 to 25 °C, 66% for 2
steps; (d) TMSOK, THF; (e) Cl2C6H3COCl, Et3N, THF, then DMAP,
PhCH3, 61% for 2 steps; (f) PPTS, MeOH, 90%; (g) Dess-Martin
periodinane, NaHCO3, CH2Cl2, 82%; (h) sulfone 4, KHMDS, THF, -78
°C, then aldehyde 23, 80%; (i) H2SiF6 20% in H2O, CH3CN, 90%.
(9) (a) Crimmins, M. T.; King, B. W.; Tabet, E. A.; Chaudhary, K. J. Org.
Chem. 2001, 66, 894. (b) Crimmins, M. T.; Christie, H. S.; Chaudhary,
K.; Long, A. J. Am. Chem. Soc. 2005, 127, 13810.
(10) Roush, W. R.; Koyama, K. Tetrahedron Lett. 1992, 33, 6227.
(11) Schinzer, D.; Bohm, O. M.; Altmann, K.-H.; Wartmann, M. Synlett 2004,
1375.
to provide the corresponding Weinreb amide17 followed by protec-
tion of the alcohol and addition of methylmagnesium chloride.
Chelation-controlled18 reduction of the ketone provided 75% of the
alcohol 18 along with 15% of the C25 isomer, which could be
recycled by oxidation-reduction. Methylation of the C25 hydroxyl
gave the corresponding C25 methyl ether. Acid-catalyzed depro-
tection of the MOM and TES groups followed by exposure of the
diol to dimethoxypropane and p-TsOH provided acetonide 19.
Ozonolysis with reductive workup followed by a Mitsunobu reaction
gave the desired sulfide, which was oxidized to sulfone 4.
With the three key fragments in hand, their assembly was
undertaken. A cross-metathesis19 between terminal alkenes 2 and
3 was performed with the Grubbs catalyst (Scheme 5). The nature
of the protecting group on the C15 alcohol had a profound influence
on the selectivity of the cross-metathesis. The best E:Z ratio was
obtained with the C15 acetate compared to other esters or the free
hydroxyl. The desired E olefin 20 was obtained in 68% yield along
with 10% of the Z-isomer.
(12) Gao, Y.; Hanson, R. M.; Klunder, J. M.; Ko, Y. S.; Masamune, H.;
Sharpless, B. K. J. Am. Chem. Soc. 1987, 109, 5765.
(13) Dess, D. B.; Martin, J. C. J. Am. Chem. Soc. 1991, 113, 7277.
(14) (a) Keck, G. E.; Abbott, D. E. Tetrahedron Lett. 1984, 25, 1883. (b) Howe,
G. P.; Wang, S.; Procter, G. Tetrahedron Lett. 1987, 28, 2629.
(15) Crimmins, M. T.; Choy, A. L. J. Am. Chem. Soc. 1999, 121, 5653.
(16) Andrus, M. B.; Hicken, E. J.; Meredith, E. L.; Simmons, B. L.; Cannon,
J. F. Org. Lett. 2003, 5, 3859.
(17) (a) Basha, A.; Lipton, M.; Weinreb, S. M. Tetrahedron Lett. 1997, 4171.
(b) Levin, J. I.; Turos, E.; Weinreb, S. M. Synth. Commun. 1982, 12,
989.
(18) Ancerewicz, J.; Vogel, P. HelV. Chim. Acta 1996, 79, 1393.
(19) Chatterjee, A. K.; Choi, T.-L.; Sanders, D. P.; Grubbs, R. H. J. Am. Chem.
Soc. 2003, 125, 11360.
(20) Inanada, J.; Hirata, K.; Saeki, H.; Katsuki, T.; Yamaguchi, M. Bull. Chem.
Soc. Jpn. 1979, 52, 1989.
(21) Blakemore, P. R. J. Chem. Soc., Perkin Trans. 1 2002, 2563.
(22) Pilcher, A. S.; Hill, D. K.; Shimshock, S. J.; Waltermire, R. E.; DeShong,
P. J. Org. Chem. 1992, 57, 2492.
JA060018V
9
J. AM. CHEM. SOC. VOL. 128, NO. 10, 2006 3129