Angewandte
Chemie
Keywords: azo compounds · foldamers · helical structures ·
.
photochromism
[1] D. J. Hill, M. J. Mio, R. B. Prince, T. S. Hughes, J. S. Moore,
Chem. Rev. 2001, 101, 3893 – 4012.
[2] a) C. Dolain, V. Maurizot, I. Huc, Angew. Chem. 2003, 115,
2844 – 2846; Angew. Chem. Int. Ed. 2003, 42, 2738 – 2740; b) E.
Kolomiets, V. Berl, I. Odriozola, A.-M. Stadler, N. Kyritsakas,
J.-M. Lehn, Chem. Commun. 2003, 2868 – 2869.
[3] a) M. Barboiu, J.-M. Lehn, Proc. Natl. Acad. Sci. USA 2002, 99,
5201 – 5206; b) M. Barboiu, G. Vaughan, N. Kyritsakas, J.-M.
Lehn, Chem. Eur. J. 2003, 9, 763 – 769; c) R. B. Prince, T. Okada,
J. S. Moore, Angew. Chem. 1999, 111, 245 – 249; Angew. Chem.
Int. Ed. 1999, 38, 233 – 236.
[4] a) Photochromism—Molecules and Systems (Ed.: H. Dürr, H.
Bouas-Laurent), Elsevier, Amsterdam, 2003; b) Molecular
Switches (Ed.: B. L. Feringa), Wiley-VCH, Weinheim, 2001;
c) Special Issue: “Photochromism: Memories and Switches”,
Chem. Rev. 2000, 100, 1683 – 1890; d) Organic Photochromic and
Thermochromic Compounds (Eds.: J. C. Crano, R. J. Gugliel-
metti), Kluwer Academic/Plenum Publishers, New York, 1999;
e) Organic Photochromes (Ed.: A. V. Elꢀtsov), Consultants
Bureau, New York, 1990.
[5] S. Hecht, Small 2005, 1, 26 – 29, and references therein.
[6] For the side-chain approach, see: a) O. Pieroni, A. Fissi, N.
Angelini, F. Lenci,Acc. Chem. Res. 2001, 34, 9 – 17; for the tether
approach, see: b) G. A. Woolley, Acc. Chem. Res. 2005, 38, 486 –
493; for related polyisocyanates with azobenzene-containing
side chains, see: c) S. Mayer, R. Zentel, Prog. Polym. Sci. 2001,
26, 1973 – 2013.
[7] a) J. C. Nelson, J. G. Saven, J. S. Moore, P. G. Wolynes, P. G.
Science 1997, 277, 1793 – 1796; b) R. B. Prince, J. G. Saven, P. G.
Wolynes, J. S. Moore, J. Am. Chem. Soc. 1999, 121, 3114 – 3121;
for a recent review, see: c) C. R. Ray, J. S. Moore, Adv. Polym.
Sci. 2005, 177, 91 – 149.
[8] See the Supporting Information.
[9] For the use of (S)-b-methyltri(ethyleneglycol) side chains, see:
a) R. B. Prince, L. Brunsveld, E. W. Meijer, J. S. Moore, Angew.
Chem. 2000, 112, 234 – 236; Angew. Chem. Int. Ed. 2000, 39, 228 –
230; b) R. B. Prince, J. S. Moore, L. Brunsveld, E. W. Meijer,
Chem. Eur. J. 2001, 7, 4150 – 4154.
[10] For related examples, see: a) S. Lahiri, J. L. Thompson, J. S.
Moore, J. Am. Chem. Soc. 2000, 122, 11315–11319; b) H. Goto,
J. M. Heemstra, D. J. Hill, J. S. Moore, Org. Lett. 2004, 6, 889–892.
[11] Solutions in aqueous acetonitrile were used for the CD experi-
ments to maximize the CD signal as a result of the increased
hydrophobic driving force and therefore ensure more accurate
kinetic data.
[12] An alternative explanation to account for the CD spectral
changes would be a transition to a more loosely packed helical
conformation. Although this conformation is rather unlikely
because of the inherent strain caused by the incorporation of the
nonmatching and nonplanar azobenzene core, it cannot be ruled
out at present time. Fluorescence emission spectroscopy, which
is a complementary experimental technique for monitoring the
helix–coil transition, was found inapplicable in this particular
system, and both HPLC and gel permeation chromatography
have not been able to completely resolve the 1trans/1cis mixture.
[13] For example, see: L.-X. Liao, F. Stellacci, D. V. McGrath,J. Am.
Chem. Soc. 2004, 126, 2181 – 2185.
[14] For example, see: W. Y. Yang, R. B. Prince, J. Sabelko, J. S.
Moore, M. Gruebele, J. Am. Chem. Soc. 2000, 122, 3248 – 3249.
[15] For an elegant example, see: a) A. Koꢁer, M. Walko, W. Meijberg,
B. L. Feringa, Science 2005, 309, 755 – 758; for a recent review, see:
b) K. Kinbara, T. Aida, Chem. Rev. 2005, 105, 1377–1400.
[16] R. B. Prince, S. A. Barnes, J. S. Moore, J. Am. Chem. Soc. 2000,
122, 2758 – 2762.
Angew. Chem. Int. Ed. 2006, 45, 1878 –1881
ꢀ 2006 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
1881