Communications
din 743 which are enabled by the formal total synthesis
described above.
Received: November 9, 2005
Keywords: antitumor agents · asymmetric synthesis ·
.
natural products · Pictet–Spengler reaction · total synthesis
[1] See the previous Communication in this issue: C. Chan, S.
Zheng, B. Zhou, J. Guo, R. M. Heid, S. J. Danishefsky, Angew.
Chem. 2006, 118, 1781; Angew. Chem. Int. Ed. 2006, 45, 1749.
[2] Isolation of 1: a) K. L. Rinehart, T. G. Holt, N. L. Fregeau, J. G.
Stroh, P. A. Keifer, F. Sun, L. H. Li, D. G. Martin, J. Org. Chem.
1990, 55, 4512; b) R. Sakai, K. L. Rinehart, Y. Guan, A. H.-J.
Wang, Proc. Natl. Acad. Sci. USA 1992, 89, 11456; total
syntheses of 1: c) E. J. Corey, D. Y. Gin, R. S. Kania, J. Am.
Chem. Soc. 1996, 118, 9202; d) A. Endo, A. Yanagisawa, M. Abe,
S. Tohma, T. Kan, T. Fukuyama, J. Am. Chem. Soc. 2002, 124,
6552; e) J. Chen, X. Chen, M. Bois-Choussy, J. Zhu, J. Am.
Chem. Soc. 2006, 128, 87; semisynthesis of 1: f) C. Cuevas, M.
Pꢀrez, M. J. Martꢁn, J. L. Chicharro, C. Fernꢂndez-Rivas, M.
Flores, A. Francesch, P. Gallego, M. Zarzuelo, F. de la Calle, J.
Garcꢁa, C. Polanco, I. Rodrꢁguez, I. Manzanares, Org. Lett. 2000,
2, 2545.
[3] For an example of base-induced epimerization at C3, see: J. W.
Lane, Y. Chen, R. M. Williams, J. Am. Chem. Soc. 2005, 127,
12684.
[4] W. Jin, S. Metobo, R. M. Williams, Org. Lett. 2003, 5, 2095.
[5] a) B. Zhou, J. Guo, S. J. Danishefsky, Org. Lett. 2002, 4, 43; b) B.
Zhou, S. Edmondson, J. Padron, S. J. Danishefsky, Tetrahedron
Lett. 2000, 41, 2039; c) B. Zhou, J. Guo, S. J. Danishefsky,
Tetrahedron Lett. 2000, 41, 2043.
Scheme 10. a) H2 (1 atm), Pd/C (10%), EtOAc, 258C, 3 h, 77%;
b) DIBAL-H/BuLi (1:1; 40 equiv), THF, 08C, 5 h, 78%; c) allyl bromide
(20 equiv), Hünig base (25 equiv), CH2Cl2, 508C, 16 h, 66%; d) KCN
(9 equiv), AcOH, 258C, 4 h, 79%; e) TFA (1 equiv), CH2Cl2, ꢀ208C,
30 min, 54%. DIBAL-H=diisobutylaluminum hydride; TFA=trifluoro-
acetic acid.
[6] C. Chan, R. Heid, S. Zheng, J. Guo, B. Zhou, T. Furuuchi, S. J.
Danishefsky, J. Am. Chem. Soc. 2005, 127, 4596.
[7] X. Chen, J. Chen, M. De Paolis, J. Zhu, J. Org. Chem. 2005, 70,
4397.
[8] For an excellent review of the tetrahydroisoquinoline alkaloids,
see: J. D. Scott, R. M. Williams, Chem. Rev. 2002, 102, 1669.
[9] For a previous example of the connection of the subunits by
amide bond formation to a secondary amine, see: E. J. Martinez,
E. J. Corey, Org. Lett. 2000, 2, 993.
[10] A. K. Sinhababu, A. K. Ghosh, R. T. Borchardt, J. Med. Chem.
1985, 28, 1273.
[11] R. M. Williams, P. P. Ehrlich, W. Zhai, J. Hendrix, J. Org. Chem.
1987, 52, 2615.
[12] A. Fujii, S. Hashiguchi, N. Uematsu, T. Ikariya, R. Noyori, J. Am.
Chem. Soc. 1996, 118, 2521.
triol 29. The latter, upon treatment with a 1:1 ate complexof
BuLi and DIBAL-H,[23] underwent partial reduction of the
lactam to provide oxazolidine 30. The reduction seemed to be
highly dependent on the reactivity of the ate complex, which
may differ from batch to batch. It was found that if there was a
slight excess of “BuLi” in the ate complex, the Troc protecting
group was easily reduced.[24] Fortunately, the phenol hydroxy
group was selectively protected as its allyl ether by treatment
of oxazolidine 30 with allyl bromide in the presence of Hünig
base. Upon exposure to KCN in acetic acid, 30 underwent
ring opening and simultaneous introduction of the C21 cyano
group to give aminonitrile 31 as a single isomer. The MOM
group was cleaved by treatment of 31 with TFA to give the
goal compound 32. As this compound is an advanced
intermediate in the Fukuyama total synthesis of 1,[2d] our
work described herein constitutes a formal total synthesis of
ecteinascidin 743.
[13] A. S. Thompson, G. R. Humphrey, A. M. DeMarco, D. J.
Mathre, E. J. Grabowski, J. Org. Chem. 1993, 58, 5886.
[14] a) J. M. Bobbitt, J. C. Sih, J. Org. Chem. 1968, 33, 856; b) J. M.
Bobbitt, T. E. Moore, J. Org. Chem. 1968, 33, 2958.
[15] K. Laali, R. J. Gerzina, C. M. Flajnik, C. M. Geric, A. M.
Dombroski, Helv. Chim. Acta 1987, 70, 607.
Having validated our routes, we are now in a position to
redirect our focus to reaching ecteinascidin 743 by novel and
far more concise pathways without necessarily intersecting an
existing pathway. We note that several fascinating pieces of
chemistry have been developed herein: 1) the very straight-
forward routes to the matched subunits 16 and 17, 2) the use
of an unusual o-hydroxystyrene moiety for the vinylogous
Pictet–Spengler cyclization, and 3) exploitation of an unusual
[16] D. B. Dess, J. C. Martin, J. Am. Chem. Soc. 1982, 104, 902.
[17] P. Four, F. Guibe, Tetrahedron Lett. 1982, 23, 1825.
[18] For a related example, see: M. J. Martin-Lopez, F. Bermejo-
Gonzalez, Tetrahedron Lett. 1994, 35, 8843.
[19] E. J. Corey, J. Das, Tetrahedron Lett. 1982, 23, 4217.
[20] J. D. Hobson, J. G. McCluskey, J. Chem. Soc. 1967, 2015.
[21] Direct McCluskey reaction of a MOM derivative of the type 9
failed owing to undesired reactivity at the MOM ether protect-
ing group.
ꢀ
enamide epoxide for the hydration of the C3 C4 double
[22] For a related rearrangement versus selective reduction of an
enamide epoxide, see: L. A. Mitscher, H. Gill, J. A. Filppi, R. L.
Wolgemuth, J. Med. Chem. 1986, 29, 1277.
bond, in the desired sense, through reductive treatment of 25.
We are currently exploring direct syntheses of ecteinasci-
1758
ꢀ 2006 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Angew. Chem. Int. Ed. 2006, 45, 1754 –1759