PAPER
C13-Diversified Bryostatin Analogues
1823
IR (thin film): 3425, 2950, 2919, 2850, 1641, 1547, 1463, 1379,
1261, 1033 cm–1.
2.26–2.30 (m, 2 H), 2.00–2.12 (m, 5 H), 1.77–1.82 (m, 3 H), 1.40–
1.65 (m, 7 H), 1.18–1.33 (m, 9 H), 1.09 (s, 3 H), 0.98 (s, 3 H), 0.86
(t, J = 7 Hz, 3 H).
1H NMR (500 MHz, CDCl3): δ = 7.78 (d, J = 8 Hz, 2 H), 6.94 (d,
J = 8 Hz, 1 H), 5.98 (s, 1 H), 5.83 (m, 1 H), 5.72–5.78 (m, 2 H),
5.31–5.38 (m, 2 H), 5.28 (d, J = 7, 15 Hz, 1 H), 5.18 (s, 1 H), 5.13
(s, 1 H), 4.51 (d, J = 13 Hz, 1 H), 4.27 (m, 1 H), 4.18 (m, 1 H), 4.12
(t, J = 10 Hz, 1 H), 4.07 (t, J = 8 Hz, 1 H), 3.86 (s, 3 H), 3.66 (s, 3
H), 3.61–3.78 (m, 3 H), 3.54 (t, J = 12 Hz, 1 H), 3.44 (t, J = 12 Hz,
1 H), 2.52–2.60 (m, 2 H), 2.17–2.36 (m, 3 H), 1.97–2.06 (m, 4 H),
1.77–1.84 (m, 3 H), 1.40–1.65 (m, 6 H), 1.18–1.33 (m, 14 H), 1.11
(s, 3 H), 0.98 (s, 3 H), 0.86 (t, J = 7 Hz, 3 H).
HRMS (ES+): m/z calcd for C46H68NaO13: 851.4572; found:
851.4575.
Acknowledgment
Support of this work through a grant (CA31845) provided by the
NIH to P.A.W. is gratefully acknowledged.
HRMS (ES+): m/z calcd for C47H69NO14Na: 894.4610; found:
894.4613
References
(1) Pettit, G. R.; Herald, C. L.; Doubek, D. L.; Herald, D. L.;
Arnold, E.; Clardy, J. J. Am. Chem. Soc. 1982, 104, 6846.
(2) For overviews of the chemistry and biology of the
bryostatins, see: (a) Wender, P. A.; Baryza, J. L.; Hilinski,
M. K.; Horan, J. C.; Kan, C.; Verma, V. A. In Drug
Discovery Research: New Frontiers in the Post-Genomic
Era; Huang, Z., Ed.; Wiley: Hoboken, 2007, Chap. 6, 127.
(b) Hale, K. J.; Hummersone, S.; Manaviazar, M. G.;
Frigerio, M. Nat. Prod. Rep. 2002, 19, 413. (c) Hale, K. J.;
Manaviazar, S. Chem. Asian J. 2010, 5, 704.
(3) For current information, see the US National Institutes of
(4) (a) Spitaler, M.; Utz, I.; Hilbe, W.; Hofmann, J.; Grunicke,
H. H. Biochem. Pharmacol. 1998, 56, 861. (b) Alkatib, A.
M.; Smith, M. R.; Kamanda, W. S.; Pettit, G. R.; Hamdan,
M.; Mohamed, A. N.; Chelladurai, B.; Mohammad, R. M.
Clin. Cancer Res. 1998, 4, 1305.
(5) (a) Oz, H. S.; Hughes, W. T.; Rehg, J. E.; Thomas, E. K.
Microb. Pathog. 2000, 29, 187. (b) Scheid, C.; Prendiville,
J.; Jayson, G.; Crowther, D.; Fox, B.; Pettit, G. R.; Stern, P.
L. Cancer Immunol. Immunother. 1994, 39, 223.
(6) (a) Sun, M.-K.; Alkon, D. L. Eur. J. Pharmacol. 2005, 512,
43. (b) Alkon, D. L.; Epstein, H.; Kuzirian, A.; Bennett, M.
C.; Nelson, T. J. Proc. Natl. Acad. Sci. U. S. A. 2005, 102,
16432. (c) Kuzirian, A. M.; Epstein, H. T.; Gagliardi, C. J.;
Nelson, T. J.; Sakakibara, M.; Taylor, C.; Scioletti, A. B.;
Alkon, D. L. Biol. Bull. 2006, 210, 201.
(7) (a) Sun, M.-K.; Hongpaisan, J.; Nelson, T. J.; Alkon, D. L.
Proc. Natl. Acad. Sci. U. S. A. 2008, 105, 13620. (b) Sun,
M.-K.; Hongpaisan, J.; Alkon, D. L. Proc. Natl. Acad. Sci.
U. S. A. 2009, 106, 14676.
(8) (a) Mehla, R.; Bivalkar-Mehla, S.; Zhang, R.; Handy, I.;
Albrecht, H.; Giri, S.; Nagarkatti, P.; Nagarkatti, M.;
Chauhan, A. PLoS One 2010, 5, e11160. For a recent report
on the use of synthetically accessible bryostatin analogues to
induce latent HIV reservoirs, see: (b) DeChristopher, B. A.;
Loy, B. A.; Marsden, M. D.; Schrier, A. J.; Zack, J. A.;
Wender, P. A. Nature Chem. 2012, 4, 705.
(9) (a) Rosse, C.; Linch, M.; Kermorgant, S.; Cameron, A. J.
M.; Boeckeler, K.; Parker, P. J. Nat. Rev. Mol. Cell Biol.
2010, 11, 103. (b) Newton, A. C. Chem. Rev. 2001, 101,
2353.
(10) (a) Protein Kinase C; Dekker, L. V., Ed.; 2nd ed.; Springer:
New York, 2004. (b) Manning, G.; Whyte, D. B.; Martinez,
R.; Hunter, T.; Sudarsanam, S. Science (Washington D. C.)
2002, 298, 1912.
Bryostatin Analogues 17 and 18
Cyclization precursor 12 (9.0 mg, 0.0083 mmol) was dissolved in
PhOMe (0.225 mL) under N2 and the resulting soln was cooled in a
CO2/MeCN bath for about 10 min. TMSOTf (1.8 μL, 0.0099 mmol)
was then added in one portion, and the resulting mixture was stirred
for 1.5 h. The reaction was then quenched with NaHCO3 (0.50 mL)
and the mixture was diluted with Et2O (1.5 mL) and H2O (1 mL).
The organic and aqueous layers were separated and the aqueous lay-
er was extracted with Et2O (3 × 2 mL). The organic phases were
combined and concentrated to give a yellow oil that was purified via
chromatography (silica gel, 25% EtOAc–PE) to give the cyclized
C26-TBS-deprotected product as a clear colorless viscous residue;
yield: 4.9 mg (56%); Rf = 0.35 (25% EtOAc–PE)
This product was dissolved in THF (7.0 mL) under N2 in a polypro-
pylene vial and the soln was cooled in an ice water bath.
HF·pyridine (70% HF; 1.82 mL) was added dropwise over 1 min,
and the mixture was stirred for 10 min. The cold bath was then re-
moved and the soln was stirred for an additional 25 h at r.t. The re-
action was quenched with sat. aq NaHCO3 (2 mL) and the mixture
was diluted with EtOAc (5 mL). The organic and aqueous layers
were separated and the aqueous layer was extracted with EtOAc
(3 × 5 mL). The organic phases were combined, dried (Na2SO4), fil-
tered, and concentrated. The crude residue was purified by chroma-
tography (silica gel, 60% EtOAc–PE) to give a 7:3 mixture of the
C13-(2-methoxyphenyl) analogue 17 and the C13-(4-methoxyphe-
nyl) analogue 18 as a white solid; yield: 1.9 mg (27%); Rf = 0.40
(60% EtOAc–PE) [stained with anisaldehyde (red)]. The pure ana-
logues were obtained by C18 reverse-phase HPLC (60% MeCN–
H2O to 100% MeCN) as amorphous white solids.
17
IR (thin film): 3426, 2922, 2852, 1722, 1663, 1463, 1429, 1376,
1260, 1232, 1158, 1109, 704 cm–1.
1H NMR (500 MHz, CDCl3): δ = 7.13–7.18 (m, 2 H), 6.91 (dt, J = 2,
7 Hz, 1 H), 6.84 (dd, J = 7, 8 Hz, 1 H), 5.99 (s, 1 H), 5.73 (d,
J = 15 Hz, 1 H), 5.32–5.37 (m, 2 H), 5.27 (s, 1 H), 5.14 (s, 1 H), 4.64
(d, J = 11 Hz, 1 H), 4.21 (m, 1 H), 4.10 (m, 1 H), 3.88 (m, 1 H), 3.82
(s, 3 H), 3.68 (s, 3 H), 3.66–3.74 (m, 3 H), 3.52–3.63 (m, 5 H), 3.54
(m, 1 H), 3.45 (t, J = 12 Hz, 1 H), 3.38 (t, J = 12 Hz, 1 H), 2.52–2.64
(m, 2 H), 2.26–2.30 (m, 2 H), 2.00–2.12 (m, 5 H), 1.77–1.82 (m, 3
H), 1.40–1.65 (m, 7 H), 1.18–1.33 (m, 9 H), 1.09 (s, 3 H), 0.98 (s, 3
H), 0.86 (t, J = 7 Hz, 3 H).
HRMS (ES+): m/z calcd for C46H68NaO13: 851.4572; found:
851.4552.
18
IR (thin film): 3426, 2922, 2852, 1722, 1663, 1463, 1429, 1376,
(11) Stone, J. C.; Stang, S. L.; Zheng, Y.; Dower, N. A.; Brenner,
S. E.; Baryza, J. L.; Wender, P. A. J. Med. Chem. 2004, 47,
6638.
(12) Stang, S. L.; Lopez-Campistrous, A.; Song, X.; Dower, N.
A.; Blumberg, P. M.; Wender, P. A.; Stone, J. C. Exp.
Hematol. 2009, 37, 122.
1260, 1232, 1158, 1109, 704 cm–1.
1H NMR (500 MHz, CDCl3): δ = 7.08 (d, J = 8 Hz, 1 H), 6.83 (dt,
J = 7, 8 Hz, 2 H), 5.99 (s, 1 H), 5.74 (d, J = 15 Hz, 1 H), 5.32–5.37
(m, 2 H), 5.22 (s, 1 H), 5.14 (s, 1 H), 4.60 (d, J = 11 Hz, 1 H), 4.21
(m, 1 H), 4.10 (m, 2 H), 3.88 (m, 1 H), 3.78 (s, 3 H), 3.68 (s, 3 H),
3.66–3.74 (m, 3 H), 3.52–3.63 (m, 5 H), 3.54 (t, J = 12 Hz, 1 H),
3.45 (t, J = 12 Hz, 1 H), 3.38 (t, J = 12 Hz, 1 H), 2.52–2.64 (m, 2 H),
© Georg Thieme Verlag Stuttgart · New York
Synthesis 2013, 45, 1815–1824