A. Gopalsamy et al. / Bioorg. Med. Chem. Lett. 16 (2006) 2978–2981
2981
Reaction completion was monitored by LC–MS and the
solvent was removed in Savant evaporator and com-
pounds were purified by HPLC and the purity was >90%.
LC conditions: HP 1100, 23 ꢁC, 10 lL injected; column:
YMC-ODS-A 4.6 · 50 mm 5l; gradient A: 0.05% TFA/
water, gradient B: 0.05% TFA/acetonitrile; time: 0 and
1 min: 98% A and 2% B: 7 min: 10% A and 90% B; 8 min:
10% A and 90% B; 8.9 min: 98% A and 2% B; post-time
1 min; flow rate 2.5 mL/min; detection: 215 and 254 nm,
DAD. Semi-Prep HPLC: Gilson with Unipoint software;
Column: Phenomenex C18 Luna 21.6 mm · 60 mm, 5 l;
solvent A: water (0.02% TFA buffer); solvent B: acetoni-
trile (0.02% TFA buffer); solvent gradient: time 0: 5% B;
2.5 min: 5% B; 12 min: 95% B; hold 95% B 3 min; flow
rate: 22.5 mL/min; detection: 215 and 254 nm. (b) 1H
NMR data for compound 35: (DMSO) d 7.85 (d, 2H),
7.26–7.36 (m, 15H), 7.25 (s, 1H), 7.0 (d, 2H), 5.88 (br s,
2H), 4.92 (s, 2H), 4.6 (s, 2H), 4.39 (s, 2H).
In conclusion, we have explored the feasibility of
pharmacophore repackaging with two different novel
scaffolds—1,2,4-oxadiazolidin-3,5-dione and 1,3,5-tria-
zin-2,4,6-trione. While 1,2,4-oxadiazolidin-3,5-dione
provided modest inhibitors, 1,3,5-triazin-2,4,6-trione
with an additional substituent to pick up further interac-
tion was more favorable. Good SAR trend for the
enzyme activity was observed for this novel scaffold
along with activity in the cell-based systems.
Acknowledgment
The authors thank discovery analytical chemistry group
at Wyeth Research, Pearl River, NY, for spectral data.
8. For Glu-Mic assay details, see Ref. 5b.
9. (a) Gilliard, J. W.; Ford-Hutchinson, A. W.; Chan, C.;
Charleson, S.; Denis, D.; Foster, A.; Fortin, R.; Legere, S.;
McFarlane, C. S.; Morton, H.; Piechuta, H.; Riendeau,
D.; Rouzer, C. A.; Rokach, J.; Young, R. N.; MacIntyre,
D. E.; Peterson, L.; Bach, T.; Eiermann, G.; Hopple, S.;
Humes, J.; Hupe, D.; Luell, S.; Metzger, J.; Meurer, R.;
Miller, D. K.; Opas, E.; Pachalok, S. Can. J. Physiol.
Pharmacol. 1989, 67, 456; (b) Hagmann, W. Biochem. J.
1994, 299(Pt. 2), 467.
10. Dessen, A.; Tang, J.; Schmidt, H.; Stahl, M.; Clark, J. D.;
Seehra, J.; Somers, W. Cell 1999, 97, 349.
11. McMartin, C.; Bohacek, R. S. J. Comput. Aided Mol. Des.
1997, 11, 333.
References and notes
1. Smith, W. L. Biochem. J. 1989, 259, 315.
2. (a) Clark, J. D.; Schievella, A. R.; Nalefski, E. A.; Lin,
L.-L. J. Lipid Mediators Cell Signal. 1995, 12, 83; (b) Six,
D. A.; Dennis, E. A. Biochim. Biophys. Acta 2000, 1488,
1.
3. Wasserman, S. I. Hosp. Pract. 1988, 15, 49.
4. (a) Sapirstein, A.; Bonventre, J. V. Biochim. Biophys. Acta
2000, 1488, 139; (b) Nagase, T.; Uozumi, N.; Ishii, S.;
Kume, K.; Izumi, T.; Ouchi, Y.; Shimizu, T. Nat.
Immunol. 2000, 1, 42; (c) Lehr, M. Drugs Future 2000,
25, 823.
12. While Arg 200 is proposed to stabilize the binding of the
negatively charged phosphate group of the phospholipid
substrate, Ser 228 acts as the nucleophile and attacks the
sn-2 ester to form the acyl enzyme intermediate. The
oxyanion hole, putatively formed by Gly 197 and Gly 198,
polarizes the sn-2 ester and stabilizes the tetrahedral
intermediate (see Ref. 10). In the model of 35, the acid
group most closely mimics the ester. Models of less potent
analogs, with shorter linkers, showed the acid group
interacting with Arg 200. However, compounds predicted
to bind deeper in the active site cleft showed enhanced
affinity.
5. (a) McKew, J. C.; Lovering, F.; Clark, J. D.; Bemis, J.;
Xiang, Y.; Shen, M.; Zhang, W.; Alvarez, J. C.; Joseph-
McCarthy, D. Bioorg. Med. Chem. Lett. 2003, 13, 4501; (b)
McKew, J. C.; Foley, M. A.; Thakker, P.; Behnke, M. L.;
Lovering, F. E.; Sum, F.-W.; Tam, S.; Wu, K.; Shen, M. W.
H.;Zhang, W.; Gonzalez, M.;Liu, S.;Mahadevan, A.;Sard,
H.; Khor, S. P.; Clark, J. D. J. Med. Chem. 2005, 49, 135.
6. Matassa, V. G.; Maduskuie, T. P.; Shapiro, H. S.; Heep,
B.; Snyder, D. W.; Aharony, D.; Krell, R. D.; Keith, R. A.
J. Med. Chem. 1990, 33, 1781.
7. (a) Parallel solution-phase synthesis was carried out in
8 mL vials in 0.1 mmol scale using an orbital shaker.