3084
C. Boucheron et al. / Tetrahedron Letters 47 (2006) 3081–3084
HRMS (ESI) m/z 584.4133 [M+H]+ (C35H58NO4Si
gnes, V.; Compain, P.; Martin, O. R.; Lavi, A.; Mackeen,
M.; Wormald, M. R.; Dwek, R. A.; Butters, T. D.
Tetrahedron: Asymmetry 2005, 16, 1747.
requires 584.4135).
20. Selected data for iminoalditol 9: 1H NMR (500 MHz,
CD3OD): d 0.90 (br t, 3H); 1.22–1.36 (m, 12H); 1.49 (m,
2H); 2.11 (t, 1H, J = 10.5 Hz, H-1ax.); 2.37 (br t, 1H, H-
5); 2.48 (m, 1H, NCH2); 2.70 (m, 1H, NCH2); 2.98 (dd,
1H, J = 5.5, 10.5 Hz, H-1eq); 3.20 (dd, 1H, J = 4.0,
10.0 Hz, H-3); 3.80 (m, 3H, H-6, H-2); 3.97 (m, 1H, H-
4); 13C NMR (125 MHz, CD3OD): d 14.5; 23.8; 25.1; 28.7;
30.5; 30.7; 30.8; 33.1; 54.1; 58.1; 62.4; 65.3; 69.1; 72.2; 77.3;
15. (a) Mehta, A.; Conyers, B.; Tyrrell, D. L. J.; Walters, K.-A.;
Tipples, G. A.; Dwek, R. A.; Block, T. M. Antimicrob.
Agents Chemother. 2002, 46, 4004; (b) Pavlovic, D.; Neville,
D. C. A.; Argaud, O.; Blumberg, B.; Dwek, R. A.; Fischer,
W.; Zitzmann, N. Proc. Natl. Acad. Sci. U.S.A. 2003, 100,
6104.
16. Displacement of a triflate leaving group via SN2 reaction
led to untractable mixtures of products. These results may
be due to the nucleophilic character of the endocyclic
amine, which causes side reactions.
20
½aꢁD +5.0 (c 0.16, MeOH); HRMS (FAB) m/z 290.2328
[M+H]+ (C15H32NO4 requires 290.2331).
21. For a discussion of the general preference for axial or
equatorial hydride delivery to cyclohexanones, see: (a) Wu,
Y.-D.; Tucker, J. A.; Houk, K. N. J. Am. Chem. Soc. 1991,
113, 5018, and references cited; (b) Carey, F. A.; Sundberg,
R. A. In Advanced Organic Chemistry. Part A: Structure
and Mechanisms, 4th ed.; Springer: New York, 2000.
22. Chang et al. have recently reported a systematic study
concerning the stereoselective reduction of ketosugars
(hexosuloses): Chang, C.-W. T.; Hui, Y.; Elchert, B.
Tetrahedron Lett. 2001, 42, 7019, and references cited.
23. See, for example: Kondo, Y.; Kashimura, N.; Onodera, K.
Agric. Biol. Chem. 1974, 38, 2553.
17. (a) Jourdant, A.; Zhu, J. Tetrahedron Lett. 2000, 41, 7033;
(b) Ciufolini, M. A.; Hermann, C. W.; Whitmire, K. H.;
Byrne, N. E. J. Am. Chem. Soc. 1989, 111, 3473; (c)
´
Badorrey, R.; Cativila, C.; Dıaz-de-Villegas, M. D.;
´
Galvez, J. A. Tetrahedron 2002, 58, 341; (d) Shirude, P.
S.; Kumar, V. A.; Ganesh, K. N. Tetrahedron 2004, 60,
9485.
18. Typical experimental procedure: To a solution of oxalyl
chloride (74 lL, 0.85 mmol) in anhydrous dichlorometh-
ane (2 mL) was added DMSO (107 lL, 1.5 mmol) under
argon. The solution was stirred at ꢀ78 °C for 30 min. A
solution of alcohol 6 (195 mg, 0.33 mmol) in anhydrous
dichloromethane (5 mL) was then added. After 3 h at
ꢀ78 °C, Et3N (467 lL, 3.35 mmol) was added and the
reaction mixture was warmed to room temperature and
stirred for 2 h. A solution of NaBH4 (127 mg, 3.35 mmol)
in MeOH (6 mL) was then added at 0 °C and the reaction
mixture was stirred at room temperature for 16 h. The
crude mixture was evaporated to dryness and then taken
into AcOEt (20 mL). The solution was washed with water
(20 mL) and saturated aqueous NaCl (20 mL). The
organic layer was dried (MgSO4) and concentrated under
reduced pressure. Purification on silica gel (petroleum
ether/ethyl acetate 6/1) afforded the secondary alcohol 8 as
a colourless oil (151 mg, 77%).
24. Selected data for iminoalditol 11: 1H NMR (250 MHz,
CDCl3): d 0.88 (br t, 3H); 1.24–1.41 (m, 14H); 2.37 (br d,
2H, H-1ax., H-5); 2.57 (m, 1H, NCH2); 2.72 (m, 1H,
NCH2); 2.97 (dd, 1H, J = 4.4, 12.2 Hz, H-1eq.); 3.41 (dd,
1H, J = 3.1, 8.8 Hz, H-3); 3.62 (dd, 1H, J = 2.2, 10.4 Hz,
H-6A); 3.68 (dd, 1H, J = 3.1, 10.4 Hz, H-6B); 3.81 (t, 1H,
J = 8.8, H-4); 3.99 (m, 1H, H-2); 4.45 (m, 3H, OCH2Ph);
4.64 (d, 1H, J = 11.6 Hz, OCH2Ph); 4.73 (d, 1H,
J = 11.9 Hz, OCH2Ph); 4.90 (d, 1H, J = 11.0 Hz,
OCH2Ph); 7.20–7.37 (m, 15H, 3 C6H5); 13C NMR
(62.9 MHz, CDCl3): d 14.2; 22.8; 24.8; 27.6; 29.4; 29.6;
29.7; 32.0; 52.7; 55.1; 64.0; 65.4; 66.6; 71.5; 73.3; 75.2; 76.1;
83.7; 127.6; 127.7; 127.8; 128.0; 128.1; 128.4; 128.5; 138.2;
20
138.4; 138.8; ½aꢁD ꢀ9.0 (c 0.7, CHCl3); HRMS (ESI) m/z
19. Selected data for iminoalditol 8: 1H NMR (250 MHz,
CDCl3): d 0.09 (s, 6H); 0.90 (m, 12H); 1.14–1.43 (m, 14H);
2.14 (t, 1H, J = 10.7 Hz, H-1ax.); 2.44 (m, 2H, H-5,
NCH2); 2.66 (m, 1H, NCH2); 2.89 (dd, 1H, J = 5.0,
11.3 Hz, H-1eq.); 3.12 (dd, 1H, J = 3.1, 8.8 Hz, H-3); 3.69
(m, 2H, H-6); 4.00 (m, 2H, H-2, H-4); 4.46 (d, 1H,
J = 11.6 Hz, OCH2Ph); 4.53 (d, 1H, J = 11.9 Hz,
OCH2Ph); 4.68 (s, 2H, OCH2Ph); 7.24–7.38 (m, 10H,
2C6H5); 13C NMR (62.9 MHz, CDCl3): d ꢀ4.7; ꢀ4.5;
14.2; 18.1; 22.7; 24.2; 25.9; 27.5; 29.3; 29.6; 29.7; 31.9; 52.9;
57.7; 62.3; 68.9; 70.4; 72.2; 73.5; 83.5; 127.6; 127.7; 127.8;
560.3740 [M+H]+ (C36H50NO4 requires 560.3740).
25. Selected data for iminoalditol 12: 1H NMR (500 MHz,
CD3OD): d 0.89 (br t, 3H); 1.24–1.36 (m, 12H); 1.47 (m,
2H); 2.11 (m, 1H, H-5); 2.48 (dd, 1H, J = 1.5, 12.5 Hz, H-
1ax); 2.58 (m, 1H, NCH2); 2.74 (m, 1H, NCH2); 2.97 (dd,
1H, J = 4.0, 12.5 Hz, H-1eq.); 3.29 (dd partly masked by
the signal of methanol, 1H, J = 4.0 Hz, H-3); 3.65 (t, 1H,
J = 9.5 Hz, H-4); 3.82 (m, 1H, H-2); 3.87 (m, 2H, H-6);
13C NMR (125 MHz, CD3OD): d 14.5; 23.8; 25.3; 28.7;
30.4; 30.74; 30.77; 33.1; 54.0; 56.6; 59.2; 67.0; 69.66; 69.71;
20
76.7; ½aꢁD ꢀ40.5 (c 0.5, MeOH); HRMS (FAB) m/z
20
128.3; 128.4; 137.9; 138.5; ½aꢁD +6.5 (c 0.6, CHCl3);
290.2333 [M+H]+ (C15H32NO4 requires 290.2331).