12 (a) Y. Sakai, E. Nishiwaki, K. Shishido and M. Shibuya, Tetrahedron
Notes and references
Lett., 1991, 32, 4363; (b) K. C. Nicolaou, W. M. Dai, S. C. Tsay,
V. A. Estevez and W. Wrasidlo, Science, 1992, 256, 1172; (c)
W. M. David and S. M. Kerwin, J. Am. Chem. Soc., 1997, 119, 1464;
(d) M. Schmittel, J. P. Steffen, M. A. W. Angel, B. Engels, C. Lennartz
and M. Hanrath, Angew. Chem., Int. Ed., 1998, 37, 1562; (e) C. Shi,
Q. Zhang and K. K. Wang, J. Org. Chem., 1999, 64, 925.
13 A. Basak, J. C. Shain and U. K. Khamrai, Tetrahedron Lett., 1997, 38,
6067.
14 A. Basak, J. C. Shain, U. K. Khamrai, K. Rudra and A. Basak,
J. Chem. Soc., Perkin Trans. 1, 2000, 1955.
15 A. Basak, S. K. Roy and S. Mandal, Angew. Chem., Int. Ed., 2005, 44,
132.
16 (a) K. M. Nicholas and R. Pettit, Tetrahedron Lett., 1971, 21, 3475; (b)
K. M. Nicholas, M. O. Nestle and D. Seyferth, Transition Metal
Organometallics in Organic Synthesis, Ed. H. Alper, Academic Press,
New York, 1978, Vol. 2; (c) The chemistry of the propargyl cation has
been reviewed: K. M. Nicholas, Acc. Chem. Res., 1987, 20, 207; (d)
S. L. Schreiber, T. Sammakia and W. E. Crowe, J. Am. Chem. Soc.,
1986, 108, 3128; (e) P. Magnus and D. P. Becker, J. Chem. Soc., Chem.
Commun., 1985, 640; (f) G. G. Melikyan and K. M. Nicholas, Modern
Acetylene Chemistry (Eds. P. J. Stang, F. Diederich), VCH, Weinheim,
1995, p. 99.
1 P. Magnus, Tetrahedron, 1994, 50, 1397.
2 (a) K. C. Nicolaou and A. L. Smith, Modern Acetylene Chemistry
(Eds. P. J. Stang, F. Diederich), VCH, Weinheim, 1995, p. 203; (b)
M. E. Maier, Synlett, 1995, 13; (c) B. Meunier, Ed., DNA and RNA
Cleavers and Chemotherapy of Cancer and Viral Diseases, Kluwer
Publishers, Dordrecht, 1996, p. 1; (d) Z. Xi and I. H. Goldberg,
Comprehensive Natural Product Chemistry (Eds. D. H. R. Barton,
K. Nakanishi), Pergamon, Oxford, 1999, Vol. 7, p. 553; (e) W. M. Dai
and K. C. Nicolaou, Angew. Chem., 1991, 103, 1453; W. M. Dai and
K. C. Nicolaou, Angew. Chem., Int. Ed. Engl., 1991, 30, 1387; (f)
H. Lhermite and D. Grierson, Contemp. Org. Synth., 1996, 3, 93; (g)
J. W. Grisom, G. U. Gunawardena, D. Klingberg and D. Huang,
Tetrahedron, 1996, 52, 6453; (h) A. Basak, S. Mandal and S. S. Bag,
Chem. Rev., 2003, 103, 4077.
3 (a) M. D. Lee, T. S. Dunne, M. M. Seigel, C. C. Chang, G. O. Morton
and D. B. Borders, J. Am. Chem. Soc., 1987, 109, 3464; (b) M. D. Lee,
T. S. Dunne, C. C. Chang, G. A. Ellestad, M. M. Seigel, G. O. Morton,
W. J. McGahren and D. B. Borders, J. Am. Chem. Soc., 1987, 109,
3466; (c) M. D. Lee, G. A. Ellestad and D. B. Borders, Acc. Chem. Res.,
1991, 24, 235.
4 (a) J. Golik, G. Dubay, G. Groenewold, H. Kawaguchi, M. Konishi,
B. Krishnan, H. Ohkuma, K. Saitoh and T. W. Doyle, J. Am. Chem.
Soc., 1987, 109, 3462; (b) J. Golik, J. Clardy, G. Dubay, G. Groenewold,
H. Kawaguchi, M. Konishi, B. Krishnan, H. Ohkuma, K. Saitoh and
T. W. Doyle, J. Am. Chem. Soc., 1987, 109, 3461; (c) M. Konishi,
H. Ohkuma, K. Saitoh, H. Kawaguchi, J. Golik, G. Dubay,
G. Groenewold, B. Krishnan and T. W. Doyle, J. Antibiot., 1985, 38,
1605.
5 (a) M. Konishi, H. Ohkuma, K. Matsumoto, T. Tsuno, H. Kamei,
T. Miyaki, T. Oki, H. Kawaguchi, G. D. VanDuyne and J. Clardy,
J. Antibiot., 1989, 42, 1449; (b) K. Shiomi, H. Linuma, M. Naganawa,
M. Hamada, S. Hattori, H. Nakamura, T. Takeuchi and Y. Litaka,
J. Antibiot., 1990, 43, 1000; (c) D. R. Langley, T. W. Doyle and
D. L. Beveridge, J. Am. Chem. Soc., 1992, 113, 3495.
17 A. Basak, S. Mandal, A. K. Das and V. Bartolasi, Bioorg. Med. Chem.
Lett., 2002, 12, 873.
18 (a) K. Sonogashira, Y. Tohoda and N. Hagihara, Tetrahedron Lett.,
1975, 16, 4467; (b) S. Takahashi, Y. Kuroyama, K. Sonogashira and
N. Hagihara, Synthesis, 1980, 627.
19 P. Magnus, G. F. Miknis, N. J. Press, D. Grandjean, G. M. Taylor and
J. Harling, J. Am. Chem. Soc., 1997, 119, 6739.
20 The bis alkyne complex 9, after close inspection, was found to be
contaminated with the reduced product 10 which implied that the
reduction was occurring during the complexation step. The proportion
of the mesylate and the reduced product was dependent upon the
duration of the reaction. After 1 h, the bis cobalt complex is only that of
the reduced product.
21 P. Magnus and S. M. Fortt, J. Chem. Soc., Chem. Commun., 1991, 544.
22 Selected spectral data: For 10: (200 MHz, [D6]DMSO): d = 8.14 (d, 3J
(H,H) = 6.0 Hz, 1H; NH), 7.72 (d, 3J (H,H) = 8.2 Hz, 2H; aryl-H),
7.35–7.20 (m, 5H; aryl-H), 6.97 (m, 1H; aryl-H), 3.98 (d, 3J (H,H) =
6.0 Hz, 2H; CH2N), 2.29 (s, 3H; Ts-CH3), 2.04 ppm (s, 3H; aliphatic-
CH3). For 12: (200 MHz, CDCl3): d = 7.82 (bd, 3J (H,H) = 8.0 Hz, 2H;
aryl-H), 7.26–7.49 (6H, bm, aryl-H), 5.06 (bm, 1H; NH), 4.93 (bs, 2H;
CH2OMs), 4.61 (bm, 2H; CH2NH), 3.08 (bs, 3H; Ms-CH3), 2.43 ppm
(bs, 3H; Ts-CH3). For 14: (200 MHz, CDCl3): d = 7.73–7.26 (bm, 8H;
aryl-H), 4.61 (bs, 2H; CoCCH2N), 4.20 (bs, 2H; CCCH2N), 2.44 ppm
(bs, 3H; Ts-CH3); HRMS calcd for C25H15O8NSCo2 (MH+) 607.9256,
6 (a) K. S. Lam, G. A. Ellested, D. R. Gustavson, A. R. Crosswell,
J. M. Veitch, S. Forenza and K. Tomita, J. Antibiot., 1991, 44, 472; (b)
J. E. Leet, D. R. Schroeder, S. Hofstead, J. Golik, K. L. Colson,
S. Huang, S. E. Klohr, T. W. Doyle and J. A. Matson, J. Am. Chem.
Soc., 1992, 114, 7946; (c) N. Zein, A. M. Casazza, T. W. Doyle,
J. E. Leet, D. R. Schroeder, W. Solomon and S. G. Nadler, Proc. Natl.
Acad. Sci. U. S. A., 1993, 90, 8009; (d) S. Kawata, M. Ashistawa and
M. Hirama, J. Am. Chem. Soc., 1997, 119, 12012.
7 (a) J. L. Hu, Y. C. Xue, M. Y. Xie, R. Zhang, T. Otani, Y. Minami,
Y. Yamada and T. Marunaka, J. Antibiot., 1988, 41, 1575; (b)
Y. Sugimoto, T. Otani, S. Oie, K. Wierzba and Y. Yamada, J. Antibiot.,
1990, 43, 417; (c) Y. Minami, K. Yoshida, R. Azuma, M. Saeki and
T. Otani, Tetrahedron Lett., 1993, 34, 2633; (d) Y. Sugiura and
T. Matsumoto, Biochemistry, 1993, 32, 5548; (e) Y. Z. Xu, Y. S. Zhen
and I. H. Goldberg, Biochemistry, 1994, 33, 5947; (f) Y. Okuno,
T. Iwashita and Y. Sugiura, J. Am. Chem. Soc., 2000, 122, 6848.
8 (a) R. G. Bergman, Acc. Chem. Res., 1973, 6, 25; (b) T. P. Lockhart and
R. G. Bergman, J. Am. Chem. Soc., 1981, 103, 4091.
9 K. C. Nicolaou, G. Zuccarello, Y. Ogawa, E. J. Schweiger and
T. Kumazawa, J. Am. Chem. Soc., 1988, 110, 4866.
10 (a) P. Magnus and T. Pitterna, J. Chem. Soc., Chem. Commun., 1991,
541; (b) P. Magnus, R. Carter, M. Davies, J. Elliott and T. Pitterna,
Tetrahedron, 1996, 52, 6283.
11 (a) S. Kobayashi, S. Ashizawa, Y. Takahashi, Y. Suigura, M. Nagaoka,
M. J. Lear and M. Hirama, J. Am. Chem. Soc., 2001, 123, 11294; (b)
Y. Koyama, M. J. Lear, F. Yoshimura, I. Ohashi, T. Mashimo and
M. Hirama, Org. Lett., 2005, 7, 267.
3
found 607.9559. For 17: (500 MHz, CDCl3): d = 7.79 (d, J (H,H) =
3.2 Hz, 2H; aryl-H), 7.76 (q, 3J (H,H) = 1.2 Hz, 2H; aryl-H), 7.62 (s, 1H;
3
3
aryl-H), 7.43 (q, J (H,H) = 1.2 Hz, 2H; aryl-H), 7.31 (d, J (H,H) =
3.2 Hz, 2H; aryl-H), 7.26 (s, 1H; aryl-H), 4.74 (s, 4H; CH2NCH2),
2.38 ppm (s, 3H; Ts-CH3); HRMS calcd for C19H17O2NS (MH+)
3
324.1054, found 324.1072. For 18: (500 MHz, CDCl3): d = 8.02 (d, J
3
(H,H) = 3.1 Hz, 1H; aryl-H), 7.82 (d, J (H,H) = 3.2 Hz, 2H; aryl-H),
7.70 (d, 3J (H,H) = 3.1 Hz, 1H; aryl-H), 7.56–7.48 (m, 3H; aryl-H), 7.33
(d, 3J (H,H) = 3.2 Hz, 2H; aryl-H), 4.88 (s, 2H; CICCH2N), 4.07 (s, 2H;
CHCCH2N), 2.39 ppm (s, 3H; Ts-CH3); HRMS calcd for
C19H16O2NSI (MH+) 450.0021, found 450.0034. For 19: (500 MHz,
CDCl3): d = 8.02 (q, 3J (H,H) = 1.2 Hz, 2H; aryl-H), 7.83 (d, 3J (H,H) =
3.2 Hz, 2H; aryl-H), 7.58 (q, 3J (H,H) = 1.2 Hz, 2H; aryl-H), 7.34 (d, 3J
(H,H) = 3.2 Hz, 2H; aryl-H), 4.84 (s, 4H; CH2NCH2), 2.39 ppm (s, 3H;
Ts-CH3); HRMS calcd for C19H15O2NSI2 (MH+) 575.8988, found
575.8964.
23 J. C. Shain, Ph.D. thesis, IIT, Kharagpur, 2000.
1648 | Chem. Commun., 2006, 1646–1648
This journal is ß The Royal Society of Chemistry 2006