Angewandte
Chemie
10221 – 10222; c) E. Shirakawa, H. Yoshida, Y. Nakao, T.
Hiyama, Org. Lett. 2000, 2, 2209 – 2211; d) H. Yoshida, E.
Shirakawa, T. Kurahashi, Y. Nakao, T. Hiyama, Organometallics
2000, 19, 5671 – 5678; e) R. Hua, S. Onozawa, M. Tanaka,
Organometallics 2000, 19, 3269 – 3271; f) E. Shirakawa, Y.
Yamamoto, Y. Nakao, T. Tsuchimoto, T. Hiyama, Chem.
Commun. 2001, 1926 – 1927; g) B. Martín-Matute, E. Buæuel,
M. MØndez, C. Nieto-Oberhuber, D. J. Cµrdenas, A. M. Echa-
varren, J. Organomet. Chem. 2003, 687, 410 – 419; h) E. Shir-
akawa, Y. Yamamoto, Y. Nakao, S. Oda, T. Tsuchimoto, T.
Hiyama, Angew. Chem. 2004, 116, 3530 – 3533; Angew. Chem.
Int. Ed. 2004, 43, 3448 – 3451; for accounts, see: i) E. Shirakawa,
T. Hiyama, Bull. Chem. Soc. Jpn. 2002, 75, 1435 – 1450; j) E.
Shirakawa, T. Hiyama, J. Organomet. Chem. 2002, 653, 114 – 121.
[3] The allylstannylation of alkynes through the nucleophilic
addition of allylstannanes across alkynes activated by a Lewis
acid is known, see: a) N. Asao, Y. Matsukawa, Y. Yamamoto,
Chem. Commun. 1996, 1513 – 1514; b) Y. Matsukawa, N. Asao,
H. Kitahara, Y. Yamamoto, Tetrahedron 1999, 55, 3779 –
3790; for the radical-mediated allylstannylation of
alkynes, see: c) K. Miura, D. Itoh, T. Honda, H. Saito,
H. Ito, A. Hosomi, Tetrahedron Lett. 1996, 37, 8539 –
8542.
Scheme 1. A plausible catalytic cycle; see text for details.
[4] For alkynylstannanes, see: a) B. Cetinkaya, M. F. Lap-
pert, J. McMeeking, D. E. Palmer, J. Chem. Soc., Dalton
Trans. 1973, 1202 – 1208; b) E. Shirakawa, H. Yoshida, T.
Hiyama, Tetrahedron Lett. 1997, 38, 5177 – 5180; c) M.
Herberhold, U. Steffl, W. Milius, B. Wrackmeyer, Chem.
Eur. J. 1998, 4, 1027 – 1032; d) T. Matsubara, K. Hirao,
Organometallics 2002, 21, 4482 – 4489; for allyl and
acylstannanes, see references [2g] and [2e], respectively.
[5] Many reports on the oxidative addition of organostan-
nanes to platinum(0) complexes are available, see: a) C.
Eaborn, A. Pidcock, B. R. Steele, J. Chem. Soc., Dalton
Trans. 1976, 767 – 776; b) G. Butler, C. Eaborn, A.
Pidcock, J. Organomet. Chem. 1978, 144, C23 – C25;
c) G. Butler, C. Eaborn, A. Pidcock, J. Organomet.
Chem. 1979, 181, 47 – 59; d) C. Eaborn, K. Kundu, A.
Pidcock, J. Chem. Soc., Dalton Trans. 1981, 1223 – 1332.
[6] The palladium-catalyzed arylstannylation of norbornene
using aryl(trichloro)stannanes has been proposed to
proceed through the oxidative addition of an Ar–Sn
bond to palladium(0) complexes, see: a) K. Fugami, Y. Mishiba,
S. Hagiwara, D. Koyama, M. Kameyama, M. Kosugi, Synlett
2000, 553 – 555; aryl- and alkenylstannanes undergo the palla-
dium-catalyzed dimerization/carbostannylation of alkynes not
through oxidative addition but through the reaction with
palladacyclopentadienes; see: b) H. Yoshida, E. Shirakawa, Y.
Nakao, Y. Honda, T. Hiyama, Bull. Chem. Soc. Jpn. 2001, 74,
637 – 647.
Scheme 2. Transformations of phenylstannylation product 3e. a) [Pd2(dba)3]
(5 mol%), N-methylpyrrolidone, 508C, 2–3 h; b) [{PdCl(h3C3H5)}2] (2.5 mol%),
PPh3 (10 mol%), THF, room temperature, 3.5 h.
Experimental Section
General procedure for the decarbonylative carbostannylation of
propargyl esters: Pd/C (10 wt%, 0.2 mg) was added to a solution of an
acylstannane (0.10 mmol) and a propargyl ester (0.20 mmol) in
dibutyl ether (0.15 mL), and the resulting reaction mixture was
stirred at 508C for the time specified in Tables 1 and 2. The reaction
mixture was filtered through a Florisil pad, concentrated in vacuo,
and purified by flash chromatography (hexane/ethyl acetate) on silica
gel to give carbostannylation products.
Received: December 2, 2005
Published online: March 3, 2006
[7] Acyl(tributyl)stannanes are readily prepared by the reaction of
aldehydes with tributylstannylmagnesium or -lithium reagents,
see: a) M. Kosugi, H. Naka, T. Sano, T. Migita, Bull. Chem. Soc.
Jpn. 1987, 60, 3462 – 3464; b) J. A. Marshall, A. W. Garofalo,
K. W. Hinke, Org. Synth. 1999, 77, 98 – 106.
[8] For decarbonylative 1,4-carbosilylation of 1,3-dienes through
three-component coupling, see: a) Y. Obora, Y. Tsuji, T.
Kawamura, J. Am. Chem. Soc. 1995, 117, 9814 – 9821; b) Y.
Obora, Y. Tsuji, T. Kawamura, J. Am. Chem. Soc. 1993, 115,
10414 – 10415.
À
Keywords: C C coupling · metalation · palladium · tin
.
[1] a) J. F. Normant, A. Alexakis, Synthesis 1981, 841 – 870; b) P.
Knochel in Comprehensive Organic Synthesis, Vol. 4(Eds.: B. M.
Trost, I. Fleming, M. F. Semmelhack), Pergamon, New York,
1991, pp. 865 – 911; c) I. Marek, J. F. Normant in Metal-Catalyzed
Cross-Coupling Reactions (Eds.: F. Diederich, P. J. Stang),
Wiley-VCH, Weinheim, 1998, pp. 271 – 337; d) A. G. Fallis, P.
Forgione, Tetrahedron 2001, 57, 5899 – 5913.
[9] The use of other ethereal solvents, such as THF, 1,4-dioxane, 1,2-
dimethoxyethane (DME), toluene, and dimethyl formamide
(DMF), gave inferior results.
[10] In contrast, benzoyl(trimethyl)stannane is readily decarbony-
lated to give trimethyl(phenyl)stannane upon treatment with a
catalytic amount of [Ni(cod)2] in the absence of an unsaturated
[2] a) E. Shirakawa, H. Yoshida, T. Kurahashi, Y. Nakao, T. Hiyama,
J. Am. Chem. Soc. 1998, 120, 2975 – 2976; b) E. Shirakawa, K.
Yamasaki, H. Yoshida, T. Hiyama, J. Am. Chem. Soc. 1999, 121,
Angew. Chem. Int. Ed. 2006, 45, 2271 –2274
ꢀ 2006 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
2273