J.W. Faller, J.C. Wilt / Journal of Organometallic Chemistry 691 (2006) 2207–2212
2211
d 151.6–124.9 (aryl region, 42C); 108.2, 93.0, 90.5, 87.1,
83.7, 52.9, 51.5, 51.3, 50.6, 34.7, 31.4, 22.3, 22.2. [a]25
(589 nm) = ꢀ34.0 (c = 0.0025, CHCl3). Anal. Calc. for
C57H56F6OP2RhSb: C, 59.14; H, 4.88. Found: C, 59.21;
H, 4.96.
by reference to the diene and by inverting the coordinates
which yielded: R = 0.0569 and Rw = 0.0511. Detailed
information is provided in the supporting information.
Appendix A. Supplementary data
3.4. Preparation of 4
Crystallographic data for the structural analysis has been
deposited with the Cambridge Crystallographic Data Cen-
tre, CCDC No. 278397 for compound 3. Copies of this
information may be obtained free of charge from: The
Director, CCDC, 12 Union Road, Cambridge, CB2 1EZ
UK; fax (int code): +44 (1223) 336 033; or e-mail: deposit@
metrical parameters are also available in the supporting
Information. Supplementary data associated with this arti-
Carbon monoxide was vigorously passed through an
orange solution of 3 (15 mg, 13 lmol) in chloroform
(1 mL). Within 5 min, the solution became bright yellow,
and the solvent was removed in vacuo. The resulting light
yellow powder was triturated with Et2O to remove dis-
placed 1, filtered, and dried under vacuum to leave the
1
desired compound (11.2 mg, 95%). H NMR (400 MHz,
CDCl3): d 7.72–7.35 (20H, BIPHEP aryl region); 7.14–
7.00 (6H, BIPHEP aryl region); 6.58 (2H, BIPHEP aryl
region). 31P NMR (162 MHz, CDCl3): d 22.1 (d, JRh–P
=
123 Hz). 13C NMR (125 MHz, CDCl3, carbonyl only): d
143.3 (dd, J = 7.2, 13.7 Hz). IR (thin film solid): 2098
(mCO), 2054(mCO). [a]25 (589 nm) = +65.6 (c = 0.0032,
CHCl3). Anal. Calc. for C38H28F6O2P2RhSb: C, 49.76;
H, 3.08. Found: C, 49.44; H, 3.52.
References
[1] H. Takaya, K. Mashima, K. Koyano, M. Yagi, H. Kumobayashi, T.
Taketomi, S. Akutagawa, J. Org. Chem. 51 (1986) 629.
[2] A. Miyashita, H. Takaya, T. Souchi, R. Noyori, Tetrahedron 40
(1984) 1245.
[3] E.P. Kyba, G.W. Gokel, F. Dejong, K. Koga, L.R. Sousa, M.G.
Siegel, L. Kaplan, G.D.Y. Sogah, D.J. Cram, J. Org. Chem. 42
(1977) 4173.
3.5. Racemization rate of 4
The optical rotation was measured over 40,000 s with a
Perkin–Elmer model 341 polarimeter at 589 nm and 25 ꢁC,
using a 1 dm path length. The first order decay was fit using
Kaleidograph 3.1 (Synergy Software) using all observed
points to obtain a value for k based on the initial rate.The
ln [a] decreases ꢁ5% over this time period, so that there is
not a significant variation in the accuracy of the measure-
ments over the duration of the experiment.
[4] J. Jacques, C. Fouquey, Tetrahedron Lett. (1971) 4617.
[5] M. Kawashima, A. Hirayama, Chem. Lett. (1990) 2299.
[6] F. Toda, K. Tanaka, J. Org. Chem. 53 (1988) 3607.
[7] K. Mikami, T. Miyamoto, M. Hatano, Chem. Commun. (2004)
2082.
[8] Y.H. Cho, A. Kina, T. Shimada, T. Hayashi, J. Org. Chem. 69 (2004)
3811.
[9] A.N. Cammidge, K.V.L. Crepy, Tetrahedron 60 (2004) 4377.
[10] T. Hayashi, J. Organometal. Chem. 653 (2002) 41.
[11] J.J. Yin, S.L. Buchwald, J. Am. Chem. Soc. 122 (2000) 12051.
[12] M. Nakajima, I. Miyoshi, K. Kanayama, S. Hashimoto, M. Noji, K.
Koga, J. Org. Chem. 64 (1999) 2264.
3.6. Structure determination and refinement
[13] P.J. Walsh, A.E. Lurain, J. Balsells, Chem. Rev. 103 (2003) 3297.
[14] J.W. Faller, A.R. Lavoie, J. Parr, Chem. Rev. 103 (2003) 3345.
[15] J.W. Faller, J. Parr, J. Am. Chem. Soc. 115 (1993) 804.
[16] J.W. Faller, M. Tokunaga, Tetrahedron Lett. 34 (1993) 7359.
[17] J.W. Faller, M.R. Mazzieri, J.T. Nguyen, J. Parr, M. Tokunaga,
Pure Appl. Chem. 66 (1994) 1463.
[18] R. Sablong, J.A. Osborn, J.W. Faller, J. Organometal. Chem. 527
(1997) 65.
[19] J.H. Koh, A.O. Larsen, P.S. White, M.R. Gagne, Organometallics 21
(2002) 7.
[20] J.W. Faller, X. Liu, Tetrahedron Lett. 37 (1996) 3449.
[21] J.W. Faller, D.W.I. Sams, X. Liu, J. Am. Chem. Soc. 118 (1996)
1217.
[22] J.W. Faller, A.R. Lavoie, B.J. Grimmond, Organometallics 21 (2002)
1662.
[23] K. Mikami, M. Yamanaka, Chem. Rev. 103 (2003) 3369.
[24] K. Mikami, M. Terada, T. Korenaga, Y. Matsumoto, M. Ueki, R.
Angelaud, Angew. Chem., Int. Ed. 39 (2000) 3532.
[25] T. Ohkuma, H. Doucet, T. Pham, K. Mikami, T. Korenaga, M.
Terada, R. Noyori, J. Am. Chem. Soc. 120 (1998) 1086.
[26] K. Mikami, K. Aikawa, Y. Yusa, J.J. Jodry, M. Yamanaka, Synlett
(2002) 1561.
[27] O. Desponds, M. Schlosser, Tetrahedron Lett. 37 (1996) 47.
[28] K. Mikami, T. Korenaga, M. Terada, T. Ohkuma, T. Pham, R.
Noyori, Angew. Chem., Int. Ed. 38 (1999) 495.
Orange crystals were obtained by slow evaporation of
an EtOH solution of complex 3. Data were collected on a
0.1 · 0.1 · 0.2 crystal at ꢀ100 ꢁC on a Nonius KappaCCD
(Mo Ka radiation) diffractometer and were not specifically
corrected for absorption other than the inherent correc-
tions provided by SCALEPACK [46]. The structure was solved
by direct methods (SIR 92) [47] and refined on F for all
reflections [48]. Non-hydrogen atoms were refined with
anisotropic displacement parameters. Hydrogen atoms
were included at calculated positions. An asymmetric unit
containing two independent [C57H56OP2Rh][SbF6] moieties
was located in a primitive monoclinic cell with Z = 4 and
˚
˚
lattice parameters of: a = 12.322(2) A; b = 21.0771(4) A;
3
˚
˚
c = 19.9387(3) A; b = 99.004(2)ꢁ; V = 5114.6(5) A . The
space group was P21 (#4). The total data collected was
21717 reflections of which 13036 were unique
(Rint = 0.055). A rotational disorder in the orientation of
the t-butyl groups was modeled as a 67:33 occupancy.
The refinement converged with residuals: R = 0.0529 and
Rw = 0.0456. The absolute configuration was determined