Table 7 Competitive uptake of Co(II), Ni(II), Cu(II) and Zn(II) by 4 or 8
(in CH2Cl2, 0.1 M, 25 ml) after contacting for 1 h at 20 ◦C with 25 ml of
an aqueous solution containing 0.85 M of each metal(II) sulfate
References
1 J. Szymanowski, Hydroxyoximes and Copper Hydrometallurgy, CRC
Press, Boca Raton, FL, 1993.
2 P. A. Tasker, P. G. Plieger and L. C. West, Comprehensive Coordination
Chemistry II, ed. J. A. McCleverty and T. J. Meyer, Elsevier, Oxford,
2003, ch. 9.17, pp. 759–808.
Ligand
M(II) concentration in dichloromethane/ppm
Co
Ni
Cu
Zn
3 G. A. Kordosky, Proc. Int. Solvent Extraction Conf., Cape Town, 2002,
4
8
2(2)
9(2)
31(1)
8(2)
400(2)
70(1)
2(2)
1(2)
p. 853.
4 N. Akkus, J. C. Campbell, J. Davidson, D. K. Henderson, H. A. Miller,
A. Parkin, S. Parsons, P. G. Plieger, R. M. Swart, P. A. Tasker and L. C.
West, Dalton Trans., 2003, 1932.
5 A. G. Smith, P. A. Tasker and D. J. White, Coord. Chem. Rev., 2003,
241, 61.
6 H. M. Irving and R. J. P. Williams, J. Chem. Soc., 1953, 3192.
7 D. J. White, L. Cronin, S. Parsons, N. Robertson, P. A. Tasker and A. P.
Bisson, Chem. Commun., 1999, 1107.
8 H. Y. Cheng, P. H. Cheng, C. F. Lee and S. M. Peng, Inorg. Chim. Acta,
1991, 181, 145.
9 P. H. Cheng, H. Y. Cheng, C. C. Lin and S. M. Peng, Inorg. Chim. Acta,
1990, 169, 19.
10 H. Y. Cheng, G. H. Lee and S. M. Peng, Inorg. Chim. Acta, 1992, 191,
25.
11 E. Kimura and T. Koike, Chem. Rev., 1998, 27, 179.
12 S. Pritchett, P. Gantzel and P. J. Walsh, Organometallics, 1997, 16,
5130.
13 L. T. Armistead, P. S. White and M. R. Gagne, Organometallics, 1998,
Fig. 6 The pH dependence of copper-loading of 4 and 8 determined by
contacting 0.1 M solution of [Cu(L − H)2] in dichloromethane with an
aqueous solution of sulfuric acid.
17, 216.
14 S. Pritchett, D. H. Woodmansee, P. Gantzel and P. J. Walsh, J. Am.
Chem. Soc., 1998, 120, 6423.
15 L. T. Armistead, P. S. White and M. R. Gagne, Organometallics, 1998,
17, 4232.
16 E. J. Corey and M. A. Letavic, J. Am. Chem. Soc., 1995, 117, 9616.
17 E. J. Corey, S. Sarshar and D.-H. Lee, J. Am. Chem. Soc., 1994, 116,
12089.
Zn(II). The observed selectivity orders Cu > Ni > Co ≈ Zn and
Cu > Co ≈ Ni > Zn for 4 and 8, respectively, must be interpreted
with caution because the errors on the uptakes of some of the
metals are close to the determined values.
18 E. J. Corey, S. Sarshar and J. Bordner, J. Am. Chem. Soc., 1992, 114,
7938.
19 E. J. Corey, R. Imwinkelried, S. Pikul and Y. B. Xiang, J. Am. Chem.
Soc., 1989, 111, 5493.
20 Y. Tamai, H. Yoshiwara, M. Someya, J. Fukumoto and S. Miyano,
J. Chem. Soc., Chem. Commun., 1994, 2281.
Conclusions
The simple aminosulfonamido ligands (Fig. 2) are cheap, very easy
to prepare and are good complexing agents, readily forming neu-
tral 2 : 1 complexes with Co, Ni, Cu and Zn, on deprotonation of
the sulfonamide group. Whilst they can form pseudo-macrocyclic
structures by head-to-tail H-bonding between coordinated ligands
in the same way as the phenolic oxime reagents,1 they are much
weaker “pH-swing” reagents and could not be used for efficient
recovery of base metals from acidic pregnant leach solutions
without pH-adjustment. Extensive intermolecular H-bonding in
the solid state leads to low solubilities in hydrocarbons of the
types used commercially in base metal recovery and extensive
alkyl-substitution would be needed to obtain high concentrations
of ligands and their metal complexes. The consequent high
molecular weights of the reagents will result in poor metal
transport efficiency (mass of metal transported per unit mass of
extractant) and high viscosity of reagents. The design, synthesis
and testing of extractants which yield more stable and soluble
pseudo-macrocyclic complexes and are better suited to base metal
recovery from acidic feeds, e.g. 4-ketopyrazolone oximes and
related heterocyclic ligands,57–59 will be reported shortly.
21 S. Hashiguchi, A. Fujii, J. Takehara, T. Ikariya and R. Noyori, J. Am.
Chem. Soc., 1995, 117, 7562.
22 K.-J. Haack, S. Hashiguchi, A. Fujii, T. Ikariya and R. Noyori, Angew.
Chem., Int. Ed. Engl., 1997, 36, 285.
23 A. Fujii, S. Hashiguchi, N. Uematsu, T. Ikariya and R. Noyori, J. Am.
Chem. Soc., 1996, 118, 2521.
24 E. J. Corey, C. M. Yu and S. S. Kim, J. Am. Chem. Soc., 1989, 111,
5495.
25 H. Ito, A. Sato and T. Taguchi, Tetrahedron Lett., 1997, 38, 4815.
26 D. A. Evans and S. G. Nelson, J. Am. Chem. Soc., 1997, 119, 6452.
27 S. E. Denmark, S. P. O’Connor and S. R. Wilson, Angew. Chem., Int.
Ed., 1998, 37, 1149.
28 S. E. Denmark and S. P. O’Connor, J. Org. Chem., 1997, 62, 584.
29 H. W. Goerlitzer, M. Spiegler and R. Anwander, Eur. J. Inorg. Chem.,
1998, 1009.
30 M. Takagi, T. Omori, S. Matsuo, S. Matsuno, K. Ueno and S. Ide,
Chem. Lett., 1980, 387.
31 G. A. Kordosky, K. D. MacKay and M. J. Virnig, Trans. Soc. Miner.
Eng. AIME, 1977, 262, 36.
32 E. Uhlig and M. Doering, Z. Anorg. Allg. Chem., 1982, 492, 52.
33 M. Doering, M. Rudolph, E. Uhlig, V. I. Nefedov and Y. V. Salyn,
Z. Anorg. Allg. Chem., 1987, 554, 217.
34 M. J. Virnig, US Pat., 4100163, 1978.
35 E. B. Spitzner, US Pat., 4237062, 1980.
36 K. D. MacKay, US Pat., 4239699, 1980.
37 R. K. Joffrion, US Pat., 4251644, 1981.
38 M. J. Virnig, US Pat., 4210759, 1980.
39 E. Spitzner, US Pat., 4252959, 1981.
Acknowledgements
40 P. G. Plieger, P. A. Tasker and S. G. Galbraith, Dalton Trans., 2004,
313.
We thank Mr J. Millar and Mr W. Kerr for obtaining NMR
spectra, Mr A. Taylor and Mr H. Mackenzie for mass spectra and
Ms L. Eades for elemental analysis. We gratefully acknowledge
the EPSRC and Avecia and Cytec Industries for funding.
41 M. Fainerman-Melnikova, A. Nezhadali, G. Rounaghi, J. C. McMur-
trie, J. Kim, K. Gloe, M. Langer, S. S. Lee, L. F. Lindoy, T. Nishimura,
K.-M. Park and J. Seo, Dalton Trans., 2004, 122.
42 P. Gans, A. Sabatini and A. Vacca, Inorg. Chim. Acta, 1976, 18, 237.
This journal is
The Royal Society of Chemistry 2006
Dalton Trans., 2006, 2026–2034 | 2033
©