3278
D. Gre´e et al. / Tetrahedron Letters 49 (2008) 3276–3278
powder and used for further synthesis. In fact, this compound 2–20
could never be purified by chromatography technics affording only
hydrolysis and/or decomposition products.
position 4 was also easily prepared in 71% yield by cuprate
addition.22
Therefore, this N-acetylimine derivative 6 appears to be
a very versatile intermediate towards HA 14-1 analogues
modified both on the amino function and on the ‘upper
part’ of this molecule.
In conclusion, this strategy involving the temporary pro-
tection of the phenol group proved to be very fruitful. It
allowed an easy synthesis of the two key intermediates 20
and 6. These derivatives should allow the preparation of
a large number of the HA 14-1 analogues modified on
the two positions required for Structure–Activity Relation-
ships. Such syntheses, as well as the biological evaluation
of the corresponding analogues, are under active study in
our groups.
14. Main spectral data of 2 and 20, based on extensive 1D and 2D
experiments: Compound 2: 1H NMR (DMSO-d6, 500 MHz): d = 8.49
(s, 1H); 8.20 (d, J = 2.5 Hz, 1H); 7.61 (dd, J = 8.9 Hz, J = 2.5 Hz,
1H); 6.98 (d, J = 8.9 Hz, 1H); 4.31 (q, J = 7.1 Hz, 2H); 1.30 (t,
J = 7.1 Hz, 3H) ppm. 13C NMR (DMSO-d6, 125.77 MHz): d = 162.4;
158.4; 147.9; 138.0; 130.5; 120.7; 119.2; 116.1; 110.9; 102.2; 62.9;
14.4 ppm. Compound 20: 1H NMR (CDCl3, 500 MHz): d = 9.68 (br s,
1H); 8.02 (s, 1H); 7.58 (dd, J = 8.7 Hz, J = 2.3, 1H); 7.54 (d,
J = 2.3 Hz, 1H); 7.09 (d, J = 8.7 Hz, 1H); 4.40 (q, J = 7.2 Hz, 2H);
1.42 (t, J = 7.2 Hz, 3H) ppm. 13C NMR (CDCl3, 125.77 MHz):
d = 163.6; 158.5; 153.5; 140.5; 136.6; 131.2; 119.4; 118.1; 115.9; 62.1;
14.1 ppm. HRMS: M+. (C12H10NO379Br): calcd 294.9844; Found:
294.9851 (2 ppm).
15. O’Callaghan, C. N.; McMurry, T. B. H.; O’Brien, J. E. J. Chem Soc.,
Perkin Trans. 2 1998, 425–429.
16. Main spectral data of 5a: 1H NMR (CDCl3, 300 MHz): d = 7.50 (d,
J = 2.4 Hz, 1H); 7.31 (dd, J = 8.6 Hz, J = 2.4 Hz, 1H); 6.85 (d, J =
8.6 Hz, 1H); 6.41 (br s, –NH2); 4.66 (d, J = 3.8 Hz, 1H); 4.23 (q,
J = 7.0 Hz, 2H); 4.22 (q, J = 7.0, 2H); 4.01–3.91 (m, 2H); 3.75 (d,
J = 3.8 Hz, 1H); 1.31 (t, J = 7.0 Hz, 3H); 1.28 (t, J = 7.1 Hz, 3H);
1.06 (t, J = 7.1 Hz, 3H) ppm. 13C NMR (CDCl3, 75 MHz): d = 168.5;
168.5; 167.9; 161.8; 149.9; 131.9; 131.1; 124.9; 117.3; 116.5; 75.1; 61.6;
61.1; 58.8; 58.6; 34.3; 14.5; 14.4; 13.8 ppm. HRMS: calcd for
Acknowledgements
We thank Laboratoires Servier for support of this
research and we thank Drs. O. Geneste, B. Pfeiffer, L.
Oliver and F. Vallette for fruitful discussions. We thank
´
the Ligue contre le Cancer (Comite d’Ille et Vilaine) for
C
12H11NO379Br: 295.99223; found: 295.9913 (6 ppm).
fellowships to V.L.M and G.V. Furthermore, P.J. is sup-
17. In our hands, all reactions designed to protect or modify the primary
amino group, and performed directly on HA 14-1, yielded only
decomposition products.
´
ported by Region Pays de la Loire (CIMATH network),
ARC (Ref. 3875) and Institut de Recherche Servier.
18. The crude product, obtained in 93% yield after removal under
vacuum of the excess of reagents, is pure (by NMR control) and can
be used directly for the next step. Main spectral data of 6: 1H NMR
(CDCl3, 300 MHz): d = 7.99 (s, 1H), 7.67–7.60 (m, 2H), 7.11 (d,
J = 9.3 Hz, 1H), 4.40 (q, J = 7.1 Hz, 2H), 2.36 (s, 3H), 1.41 (t, J =
7.1 Hz, 3H) ppm. 13C NMR (75 MHz, CDCl3) d 162.9, 153.0, 147.4,
144.1, 141.5, 137.4, 136.5, 131.8, 121. 9, 118.2, 117.5, 62.7, 26.3,
14.6 ppm.
References and notes
1. Schmitt, C. A.; Lowe, S. W. J. Pathol. 1999, 187, 127–137.
2. Lowe, S. W.; Cepero, E.; Ewan, G. Nature 2004, 432, 307–315.
3. Juin, P.; Geneste, O.; Raimbaud, E.; Hickman, J. A. Biochim.
Biophys. Acta 2004, 1644, 251–260 and references cited therein.
4. Letai, A. Trends Mol. Med. 2005, 11, 442–444.
5. (a) Wang, J.-L.; Liu, D.; Zhang, Z.-J.; Shan, S.; Han, X.; Srinivasula,
S. M.; Croce, C. M.; Alnemri, E. S.; Huang, Z. Proc. Natl. Acad. Sci.
U.S.A. 2000, 97, 7124–7129; (b) Huang, Z.; Hui, D.; Han, X.; Zhang,
Z.; Wang, J. PCT Int. Appl. WO 2000/004901; Chem. Abstr. 132,
117566.
19. Ukhov, S. V.; Kons’hin, M. E.; Odegova, T. F. Pharm. Chem. J. 2001,
35, 364–365.
20. Main spectral data of 7a: Mixture of two diastereoisomers: 1st dia: 1H
NMR (CDCl3, 300 MHz) d 10.86 (s, 1H), 7.38 (dd, J = 8.8, 2.2 Hz,
1H), 7.22 (d, J = 2.2 Hz, 1H), 7.07 (d, J = 8.8 Hz, 1H), 4.69 (d, J =
3.6 Hz, 1H), 4.23 (q, J = 7.3 Hz, 2H), 3.82 (d, J = 3.6 Hz, 1H), 2.23 (s,
3H), 1.30 (t, J = 7.3 Hz, 3H) ppm. 2nd dia: 1H NMR (CDCl3,
300 MHz) d 10.91 (s, 1H), 7.51 (d, J = 2.2 Hz, 1H), 7.41 (dd, J = 8.7,
2.2 Hz, 1H), 7.03 (d, J = 8.7 Hz, 1H), 4.59 (d, J = 4.4 Hz, 1H), 4.04
(q, J = 7.2 Hz, 2H), 3.61 (d, J = 4.4 Hz, 1H), 2.21 (s, 3H), 1.11 (t,
J = 7.2 Hz, 3H) ppm. 13C NMR (CDCl3, 75 MHz,) d (mixture of
diastereoisomers) 167.6, 167.5, 167.3, 167.1, 164.4, 164.1, 156.9, 156.8,
149.2, 149.0, 132.8, 132.6, 131.2, 130.9, 122.0, 121.1, 119.1, 118.7,
118.3, 118.1, 115.1, 114.6, 81.9, 81.3, 63.4, 63.1, 61.5, 61.4, 46.2, 45.2,
36.4, 36.3, 25.7, 25.6, 14.3, 14.2, 14.0, 13.7 ppm.
´
6. (a) Manero, F.; Gautier, F.; Gallenne, T.; Cauquil, N.; Gree, D.;
´
Cartron, P.-F.; Geneste, O.; Gree, R.; Vallette, F. M.; Juin, P. Cancer
Res. 2006, 66, 2757–2764; (b) Fesik, S. W. Nature Rev. Cancer 2005, 5,
876–885 and references cited therein.
´
7. Oliver, L.; Mahe, B.; Gree, R.; Vallette, F. M.; Juin, P. Leukemia Res.
2007, 31, 859–863.
8. Doshi, J. M.; Tian, D.; Xing, C. Mol. Pharm. 2007, 4, 919–928 and
references cited therein.
9. Doshi, J. M.; Tian, D.; Xing, C. J. Med. Chem. 2006, 49, 7731–7739.
10. Yu, N.; Aramini, J. M.; Germann, M. W.; Huang, Z. Tetrahedron
Lett. 2000, 41, 6993–6996.
11. (a) Roudier, J. F.; Foucaud, A. Synthesis 1984, 159–160; (b) Curini,
M.; Epifano, F.; Chimichi, S.; Montanari, F.; Nocchetti, M.; Rosati,
O. Tetrahedron Lett. 2005, 46, 3497–3499.
12. Volmajer, J.; Toplak, R.; Leban, I.; Le Marechal, A. M. Tetrahedron
2005, 61, 7012–7021.
13. The choice of ethylvinylether as a protective group proved to be
important in that case since, after the deprotection step using
Amberlyst, the key intermediate 2–20 could be isolated directly as a
21. For another method to obtain analogues with a monoester chain in
position 4 see: Curini, M.; Rosati, O.; Marcotullio, M. C.; Montanari,
F.; Campagna, V.; Pace, V.; Cravotto, G. Eur. J. Org. Chem. 2006,
746–751.
22. Some 4-aryl-4H-chromenes are also known as potent apoptosis
inducers, see: Kemnitzer, W.; Drewe, J.; Jiang, S.; Zhang, H.; Wang,
Y.; Zhao, J.; Jia, S.; Herich, J.; Labreque, D.; Storer, R.; Meerovitch,
K.; Bouffard, D.; Rej, R.; Denis, R.; Blais, C.; Lamothe, S.; Attardo,
G.; Gourdeau, H.; Tseng, B.; Kasibhatla, S.; Cai, S. X. J. Med. Chem.
2004, 47, 6299–6310.