treatment of Alzheimer’s dementia,5 eating disorders, sexual
behavior and stress,9 depression,10 and cholesterol blood levels.8
Recently, 2,5-disubstituted quinuclidines11 have been used as
chiral ligands in asymmetric reactions.12 The development of a
new, general, and convergent method for the synthesis of
substituted quinuclidines is therefore important to further exploit
the important properties of this class of molecules.
A Diastereoselective Radical Cyclization
Approach to Substituted Quinuclidines
Thomas A. Hunt,† Andrew F. Parsons,*,† and Robert Pratt‡
Department of Chemistry, UniVersity of York, Heslington, York,
YO10 5DD, U.K. and Vernalis Research Ltd, Oakdene Court,
613 Reading Road, Winnersh, Wokingham, RG41 5UA, U.K.
Building on our earlier research into the phosphorus hydride
mediated radical cyclization of dienes,13 we embarked on a
diastereoselective synthesis of 2,5-disubstituted quinuclidines,
of type 2, that would be amenable to a synthesis of (-)-quinine
1 (Scheme 1).14 It is envisaged that the HWE-type reaction of
unstabilized phosphonothioate 3 with ketones would give access
to a diverse library of quinuclidines. Construction of phos-
phonothioate 3 is to be achieved by an SN2-type cyclization of
phosphonothioate 4, which is to be synthesized by a diastereo-
selective phosphorus hydride mediated radical cyclization of
diene 5. Known iodide 615 will be used to construct diene 5
and the oxazolidinone ring will act as a N- and O-protecting
group.
ReceiVed February 20, 2006
A new, concise, and flexible approach to novel quinuclidines
has been developed, which employs a phosphorus hydride
mediated radical addition/cyclization reaction in the key step.
1,7-Diene 5 reacts with diethyl thiophosphite in an efficient
and diastereoselective radical addition/cyclization reaction
to give trisubstituted piperidines 4ab. Piperidines 4ab are
subsequently converted into 2,5-disubstituted quinuclidines
using SN2-type cyclizations. Finally, the resulting quinucli-
dines are shown to undergo novel Horner-Wadsworth-
Emmons-type (HWE-type) reactions to give unsaturated
quinuclidines 21a and 21b, which have structures similar to
that of (-)-quinine 1.
Elaboration of substrates such as iodide 6 can be difficult
due to the presence of a â-heteroatom.16 However, it has been
shown that iodide 6 readily forms an organozinc reagent, which
reacts with a range of electrophiles.17 The synthesis of diene 5
began with an organozinc/copper coupling reaction of iodide 6
(Scheme 2). Insertion of activated zinc (Zn*)18 into the C-I
bond in 6, followed by transmetalation to copper, gave an
(7) Swain, C. J.; Fong, T. M.; Haworth, K.; Owen, S. N.; Seward, E.
M.; Strader, C. D. Bioorg. Med. Chem. Lett. 1995, 5, 1261-1264.
(8) Brown, G. R.; Foubister, A. J.; Freeman, S.; McTaggart, F.; Mirrlees,
D. J.; Reid, A. C.; Smith, G. J.; Taylor, M. J.; Thomason, D. A.; Whittamore,
P. R. O. Bioorg. Med. Chem. Lett. 1997, 7, 197-600.
(9) Rosen, T.; Nagel, A. A.; Rizzi, J. P. Synlett 1991, 213-221.
(10) Mantyh, P. W. J. Clin. Psych. 2002, 63, 6-10.
(11) 2,5-Disubstituted quinuclidines (quincorine and quincoridine) are
available from the degradation of (-)-quinine 1 and quinidine: Hoffmann,
H. M. R.; Plessner, T.; von Riesen, C. Synlett 1996, 690-692.
(12) (a) Hartikka, A.; Modin, S. A.; Andersson, P. G.; Arvidsson, P. I.
Org. Biomol. Chem. 2003, 1, 2522-2526. (b) Pellet-Rostaing, S.; Saluzzo,
C.; Halle, R. T.; Breuzard, J.; Vial, L.; Guyader, F. Le; Lemaire, M.
Tetrahedron: Asymmetry 2001, 12, 1983-1985. (c) Saluzzo, C.; Breuzard,
J.; Pellet-Rostaing, S.; Vallet, M.; Guyader, F. Le; Lemaire, M. J.
Organomet. Chem. 2002, 643, 98-104.
(13) (a) Jessop, C. M.; Parsons, A. F.; Routledge, A.; Irvine, D.
Tetrahedron Lett. 2003, 44, 479-483. (b) Jessop, C. M.; Parsons, A. F.;
Routledge, A.; Irvine, D. J. Tetrahedron Lett. 2004, 45, 5095-5098. (c)
Healy, M. P.; Parsons, A. F.; Rawlinson, J. G. T. Org. Lett. 2005, 7, 1597-
1600.
(14) (a) For a review on the synthesis of (-)-quinine 1, see: Kaufman,
T. S.; Ru´veda, E. A. Angew. Chem., Int. Ed. 2005, 44, 854-885. For
stereoselective syntheses of (-)-quinine 1, see: (b) Stork, G.; Niu, D.;
Fujimoto, A.; Koft, E. R.; Balkovec, J. M.; Tata, J. R.; Drake, G. R. J. Am.
Chem. Soc. 2001, 123, 3239-3242. (c) Raheem, I. T.; Goodman, S. E.;
Jacobsen, E. N. J. Am. Chem. Soc. 2004, 126, 706-707. (d) Igarashi, J.;
Katsukawa, M.; Wang, Y.-G.; Acharya, H. P.; Kobayashi, Y. Tetrahedron
Lett. 2004, 45, 3783-3786. (e) Igarashi, J.; Kobayashi, Y. Tetrahedron
Lett. 2005, 46, 6381-6384.
Quinuclidines are an important class of molecules found in
many natural products1,2 including (-)-quinine 1, which is one
of the most important naturally occurring alkaloids because of
its role in treating malaria.3 (-)-Quinine 1 is a member of the
cinchona family of alkaloids, and these compounds and their
derivatives have been used in a wide range of synthetic
applications.4 Various quinuclidines have also been shown to
be inhibitors of the muscarinic (M1),5 serotonin-3 (5-HT3),6 and
neurokinin (NK1)7 receptors and also as squalene synthase
inhibitors.8 The inhibition of these targets is important in the
† University of York.
‡ Vernalis Research Ltd.
(1) Turner, R. B.; Woodward, R. B. The Chemistry of the Cinchona
Alkaloids in The Alkaloids; Manske, R. H. F., Ed.; Academic Press: New
York, 1953; Vol. 3, Chapter 16.
(2) Kitajima, M.; Takayama, H.; Sakai, S.-i. J. Chem. Soc., Perkin Trans.
1 1991, 1773-1779.
(3) Caseel, D. A. Quinine has been claimed “to have relieved more human
suffering than any other in history”. In Burger’s Medicinal Chemistry and
Drug DiscoVery, 5th ed.; Wolff, M. E., Ed.; John Wiley: New York, 1997;
Vol. 5, Chapter 59, p 16.
(4) For recent reviews, see: (a) Kacprzak, K.; Gawronski, J. Synthesis
2001, 961-998. (b) Tian, S.-K.; Chen, Y.; Hang, J.; Tang, L.; McDaid, P.;
Deng, L. Acc. Chem. Res. 2004, 37, 621-631. (c) OÄ Da´laigh, C. Synlett
2005, 875-876.
(5) (a) Saunders, J.; Cassidy, M.; Freedman, S. B.; Harley, E. A.; Iverson,
L. L.; Kneen, C.; Macleod, A. M.; Merchant, K. J.; Snow, R. J.; Baker, R.
J. Med. Chem. 1990, 33, 1128-1138. (b) Baker, R.; Street, L. J.; Reeve,
A. J.; Saunders, J. J. Chem. Soc., Chem. Commun. 1991, 760-762.
(6) Clark, R. D.; Weinhart, K. K.; Berger, J.; Lee, C.-H.; Leung, E.;
Wong, E. H. F.; Smith, W. L.; Eglen, R. M. Bioorg. Med. Chem. Lett.
1993, 3, 1375-1378.
(15) Jackson, R. F. W.; Perez-Gonzalez, M. Org. Synth. 2005, 81, 77-
88.
(16) Kotsuki, H.; Kadota, I.; Ochi, M. J. Org. Chem. 1990, 55, 4417-
4422 and references therein.
(17) For recent reviews, see: (a) Rilatt, I.; Caggiano, L.; Jackson, R. F.
W. Synlett 2005, 2701-2719. (b) Knochel, P.; Singer, R. D. Chem. ReV.
1993, 93, 2117-2188.
(18) Activated zinc was prepared using dibromoethane and TMSCl; see
Supporting Information for further details. For alternative methods of
forming activated zinc see ref 17b.
10.1021/jo060349q CCC: $33.50 © 2006 American Chemical Society
Published on Web 04/06/2006
3656
J. Org. Chem. 2006, 71, 3656-3659