slowly cooled to a discotic hexagonal phase and stabilized.
No magnetic field was used for sample alignment. Polarized
optical microscopy showed a highly birefringent texture for 1a
practically with no homeotropic domains, while the texture
of the carbazole derivative 2a exhibited large homeotropic
domains with discotic columnar axes perpendicular to the
electrodes.
We are also in debt to Dr Wiktor A. Piecek, a visiting NATO
Fellow on leave from Military University of Technology
(Warsaw, Poland), for his technical assistance.
References
1 D. Adam, F. Closs, T. Frey, D. Funhoff, D. Haarer, H. Ringsdorf,
P. Schuhmacher and K. Siemensmeyer, Phys. Rev. Lett., 1993, 70,
457–460.
1,3,6,8-Tetraarylcarbazole (2). General procedure
2 D. Adam, P. Schuhmacher, J. Simmerer, L. Haeussling,
K. Siemensmeyer, K. H. Etzbach, H. Ringsdorf and D. Haarer,
Nature, 1994, 371, 141–143.
3 N. Boden, R. J. Bushby, J. Clements, B. Movaghar, K. J. Fonobsn
and T. Kreouzis, Phys. Rev. B, 1995, 52, 13274–13280.
4 D. Adam, W. Roemhildt and D. Haarer, Jpn. J. Appl. Phys., 1996,
35, 1826–1831.
5 A. Ochse, A. Kettner, J. Kopitzke, J. H. Wendorff and H. Bassler,
Phys. Chem. Chem. Phys., 1999, 1, 1757–1760.
6 S. Chandrasekhar and S. K. Prasad, Contemp. Phys., 1999, 40,
237–245.
7 T. Kreouzis, K. J. Donovan, N. Boden, R. J. Bushby, O. R. Lozman
and Q. Liu, J. Chem. Phys., 2001, 114, 1797–1802.
8 K. J. Donovan, T. Kreouzis, K. Scott, J. C. Bunning, R. J. Bushby,
N. Boden, O. R. Lozman and B. Movaghar, Mol. Cryst. Liq.
Cryst., 2003, 396, 91–112.
9 S. Chandrasekhar, in Handbook of Liquid Crystals, ed. D. Demus,
J. W. Goodby, G. W. Gray, H.-W. Spiess and V. Vill, Wiley-VCH,
New York, 1998, vol. 2B, pp. 749–780; N. Boden and B. Movaghar,
in Handbook of Liquid Crystals, ed. D. Demus, J. W. Goodby,
G. W. Gray, H.-W. Spiess and V. Vill, Wiley-VCH, New York,
1998, vol. 2B, pp. 781–798; R. J. Bushby and O. R. Lozman, Curr.
Opin. Colloid Interface Sci., 2002, 7, 343–354.
A mixture of 1,3,6,8-tetrabromocarbazole32 (4, 482 mg,
1 mmol), appropriate boronic ester 5 (4.4 mmol), (Ph3P)4Pd
(0.2 mmol), 2 M aqueous solution of Na2CO3 (4 mL), EtOH
(4 mL), and toluene (40 mL) was refluxed for 24–72 h under
N2 until a single major product was observed by TLC. The
reaction mixture was cooled, Et2O was added, and the organic
layer was separated and dried (Na2SO4). The solvent was
evaporated and the crude product was passed through a silica
gel plug with hexanes–CH2Cl2 (2 : 1 ratio). The product was
isolated by column chromatography (pure hexanes followed by
increasing ratio of hexanes–CH2Cl2) followed by recrystalliza-
tion from a hexanes–ethanol mixture.
1,3,6,8-Tetrakis(3,4-dioctyloxyphenyl)carbazole (2a). Cr 61
(3 kJ mol21) Crcol 109 (24 kJ mol21) Colh 126 (20 kJ mol21
)
Iso; 1H NMR d 0.78–0.85 (m, 24H), 1.22–1.44 (m, 80H), 1.73–
1.85 (m, 16H), 3.95–4.07 (m, 16H), 6.92 (d, J = 1.6 Hz, 2H),
6.95 (s, 2H), 7.15–7.22 (m, 8H), 7.55 (d, J = 1.6 Hz, 2H), 8.16
(d, J = 1.5 Hz, 2H), 8.44 (s, 1H); IR 3438 (NH), 1514 (CLC)
1248 (C–O–C) cm21; UV-vis lmax (log e): 209 (4.99), 267
(4.91), 358 (3.83), 368 (3.83). Anal. Calcd for C100H153NO8: C,
80.22; H, 10.30; N, 0.94. Found: C, 80.09; H, 10. 32; N, 0.94%.
10 S. Kumar, Chem. Soc. Rev., 2006, 35, 83–109.
11 I. H. Stapff, V. Stumpflen, J. H. Wendorff, D. B. Spohn and
D. Mobius, Liq. Cryst., 1997, 23, 613–617; I. Seguy, P. Jolinat,
P. Destruel, J. Farenc, R. Mamy, H. Bock, J. Ip and T. P. Nguyen,
J. Appl. Phys., 2001, 89, 5442–5448.
12 L. Schmidt-Mende, A. Fechtenkotter, K. Mu¨llen, E. Moons,
R. H. Friend and J. D. Mackenzie, Science, 2001, 293, 1119–1122.
13 A. M. van de Craats, N. Stutzmann, O. Bunk, M. M. Nielsen,
M. Watson, K. Mullen, H. D. Chanzy, H. Sirringhaus and
R. H. Friend, Adv. Mater., 2003, 15, 495–499.
1,3,6,8-Tetrakis(4-octyloxyphenyl)carbazole (2b). Cr1 104
1
(6 kJ mol21) Cr2 114 (38 kJ mol21) Iso; H NMR d 0.83 (t,
14 I. McCulloch, W. Zhang, M. Heeney, C. Bailey, M. Giles,
D. Graham, M. Shkunov, D. Sparrowe and M. Tierney,
J. Mater. Chem., 2003, 13, 2436–2444.
15 C. W. Struijk, A. B. Sieval, J. E. J. Dakhorst, M. van Dijk,
P. Kimkes, R. B. M. Koehorst, H. Donker, T. J. Schaafsma,
S. J. Picken, A. M. van de Craats, J. M. Warman, H. Zuilhof and
E. J. R. Sudholter, J. Am. Chem. Soc., 2000, 122, 11057–11066.
16 H. Fujikake, T. Murashige, M. Sugibayashi and K. Ohta, Appl.
Phys. Lett., 2004, 85, 3474–3476.
J = 6.5 Hz, 12H), 1.19–1.45 (m, 40H), 1.71–1.81 (m, 8H), 3.96
(t, J = 6.5 Hz, 4H), 3.97 (t, J = 6.5 Hz, 4H), 6.94 (d, J = 8.7 Hz,
4H), 6.99 (d, J = 8.7 Hz, 4H), 7.54 (s, 2H), 7.55 (d, J = 8.3 Hz,
4H), 7.60 (d, J = 8.7 Hz, 4H), 8.18 (s, 2H), 8.35 (s, 1H); 13C
NMR d 14.1, 22.7, 26.1, 29.27, 29.32, 29.36, 29.40, 31.8, 68.1,
114.8, 115.3, 117.1, 124.7, 125.0, 125.1, 128.3, 129.2, 131.0,
133.4, 134.4, 136.8, 158.3, 158.7; IR 3479 (NH), 1511 (CLC)
1250 (C–O–C) cm21. Anal. Calcd for C68H89NO4: C, 82.96; H,
9.11; N, 1.42. Found: C, 82.78; H, 9.11; N, 1.42%.
17 H. Iino, J. Hanna, R. J. Bushby, B. Movaghar, B. J. Whitaker and
M. J. Cook, Appl. Phys. Lett., 2005, 87, 132102.
18 A. M. van de Craats, J. M. Warman, A. Fechtenkotter, J. D. Brand,
M. A. Harbison and K. Mullen, Adv. Mater., 1999, 11, 1469–1472.
19 M. G. Debije, J. Piris, M. P. de Haas, J. M. Warman, Z. Tomovic,
C. D. Simpson, M. D. Watson and K. Muellen, J. Am. Chem. Soc.,
2004, 126, 4641–4645.
20 R. J. Bushby and O. R. Lozman, Curr. Opin. Solid State Mater.
Sci., 2003, 6, 569–578.
21 S. F. Nelson, Y.-Y. Lin, D. J. Gundlach and T. N. Jackson, Appl.
Phys. Lett., 1998, 72, 1854–1856; F. Granier, G. Horowitz, X. Peng
and D. Fichou, Adv. Mater., 1990, 2, 592–594.
1,3,6,8-Tetrakis(3,5-dioctyloxyphenyl)carbazole (2c). Liquid:
1H NMR d 0.86 (t, J = 6.4 Hz, 12H), 0.89 (t, J = 6.5 Hz, 12H),
(m, 24H), 1.30–1.50 (m, 80H), 1.74–1.85 (m, 16H), 3.98 (t, J =
6.6 Hz, 8H), 4.05 (t, J = 6.5 Hz, 8H), 6.48 (t, J = 2.1 Hz, 2H),
6.51 (t, J = 2.1 Hz, 2H), 6.81 (d, J = 2.2 Hz, 4H), 6.98 (d, J =
2.2 Hz, 4H), 7.71 (d, J = 1.6 Hz, 2H), 8.32 (d, J = 1.4 Hz, 2H),
8.66 (s, 1H); IR 3459 (NH), 1590 (CLC) 1166 (C–O–C) cm21
.
22 N. Karl, K.-H. Kraft, J. Marktanner, M. Munch, F. Schatz,
R. Stehle and H.-M. Uhde, J. Vac. Sci. Technol., A, 1999, 17,
2318–2328.
Anal. Calcd for C100H153NO8: C, 80.22; H, 10.30; N, 0.94.
Found: C, 80.37; H, 10.37; N, 0.90%.
23 R. F. Chaiken and D. R. Kearns, J. Chem. Phys., 1968, 49,
2846–2850.
24 M. Tierney and D. Lubman, Appl. Spectrosc., 1987, 41, 880–886.
25 R. A. Holroyd, J. M. Preses, E. H. Boettcher and W. F. Schmidt,
J. Phys. Chem., 1984, 88, 744–749.
Acknowledgements
This project was supported by NSF grants (CHE-9528029 and
CHE-0096827). We thank Prof. Paul A. Heiney for valuable
suggestions concerning the interpretation of the XRD results.
26 R. Oshima, T. Uryu and M. Seno, Macromolecules, 1985, 18,
1043–1045.
This journal is ß The Royal Society of Chemistry 2007
J. Mater. Chem., 2007, 17, 1392–1398 | 1397