2602
A. Hall et al. / Bioorg. Med. Chem. Lett. 19 (2009) 2599–2603
B(OH)2
O
Cl
Lindsay Mulligan, Shiyam Mohamed for DMPK data, Alan K. Bri-
stow for solubility data and Thomas G. Hayhow for assistance with
large scale chemical synthesis.
I
Cl
a
Cl
I
b, c
O
OH
F
Cl
10
11
12
References and notes
1. (a) Kassuya, C. A. L.; Ferreira, J.; Claudino, R. F.; Calixto, J. B. Br. J. Pharmacol.
2007, 150, 727; (b) Minami, T.; Uda, R.; Horiguchi, S.; Ito, S.; Hyodo, M.;
Hayashi, M. Pain 1994, 57, 217.
d, e
2. (a) Fitzgerald, G. A. C. Nat. Rev. Drug Disc. 2003, 2, 879; (b) Huntjens, D. R. H.;
Danhof, M.; Della Pasqua, O. E. Rheumatology 2005, 44, 846; (c) Bianchi, M.;
Broggini, M. Drugs 2003, 63, 37; (d) Zhang, Y.; Shaffer, A.; Portanova, J.; Seibert,
K.; Isakson, P. C. J. Pharmacol. Exp. Ther. 1997, 283, 1069.
3. (a) Trebino, C. E.; Stock, J. L.; Gibbons, C. P.; Naiman, B. M.; Wachtmann, T. S.;
Umland, J. P.; Pandher, K.; Lapointe, J.-M.; Saha, S.; Roach, M. L.; Carter, D.;
Thomas, N. A.; Durtschi, B. A.; McNeish, J. D.; Hambor, J. E.; Jakobsson, P.-J.;
Carty, T. J.; Peez, J. R.; Audoly, L. P. Proc. Nat. Acad. Sci. 2003, 100, 9044; (b)
Kamei, D.; Yamakawa, K.; Takegoshi, Y.; Mikami-Nakanishi, M.; Nakatani, Y.;
Oh-ishi, S.; Yasui, H.; Azuma, Y.; Hirasawa, N.; Ohuchi, K.; Kawaguchi, H.;
Ishikawa, Y.; Ishii, T.; Uematsu, S.; Akira, S.; Murakami, M.; Kudo, I. J. Biol. Chem.
2004, 279, 33684.
Na+
O
O
N
Cl
.HCl
N
HO2C
N
CO2H
CO2Et
f, g, h
Cl
O
F
Cl
13
14
8h
Scheme 2. Reagents and conditions: (a) BBr3, CH2Cl2, À78 °C to rt (99%); (b) 4-
chloro-2-fluorobenzyl bromide, K2CO3, Me2CO, reflux, 2 h (98%); (c) i-PrMgCl, THF,
B(OMe)3, À40 °C to rt then 2 M HCl (90–93%); (d) Pd(PPh3)4, K2CO3, 13, PhMe/EtOH
(1:1), 90 °C, 2 h (51%); (e) EtOH, 2 M NaOH, reflux to rt (96%); (f) EtOH, concn H2SO4,
reflux (95%); (g) NaBH4, EtOH, rt (72–83%); (h) SOCl2, CH2Cl2 (100%).
4. (a) Xu, D.; Rowland, S. E.; Clark, P.; Giroux, A.; Côté, B.; Guiral, S.; Salem, M.;
Ducharme, Y.; Friesen, R. W.; Méthot, N.; Mancini, J.; Audoly, L.; Riendeau, D. J.
Pharm. Expt. Ther. 2008, 326, 754; (b) Friesen, R. W.; Mancini, J. A. J. Med. Chem.
2008, 51, 1059.
5. (a) Coleman, R. A.; Smith, W. L.; Narumiya, S. Pharmacol. Rev. 1994, 46, 205; (b)
Narumiya, S.; Sugimoto, Y.; Ushikubi, F. Physiol. Rev. 1999, 79, 1193; (c)
Coleman, R. A.; Kennedy, I.; Humphrey, P. P. A.; Bunce, K.; Lumley, P.. In
Comprehensive Medicinal Chemistry; Pergamon: Oxford, UK, 1990; Vol. 3.
6. (a) Tober, K. L.; Wilgus, T. A.; Kusewitt, D. F.; Thomas-Ahner, J. M.; Maruyama,
T.; Oberyszyn, T. M. J. Investig. Dermatol. 2006, 126, 205; (b) Omote, K.;
Kawamata, T.; Nakayama, Y.; Kawamata, M.; Hazama, K.; Namiki, A. Anesth.
Analg. 2001, 92, 233; (c) Kawahara, H.; Sakamoto, A.; Takeda, A.; Onodera, H.;
Imaki, J.; Ogawa, R. Anesth. Analg. 2001, 93, 1012; (d) Omote, K.; Yamamoto, H.;
Kawamata, T.; Nakayama, Y.; Namiki, A. Anesth. Analg. 2002, 95, 1708; (e)
Minami, T.; Nakano, H.; Kobayashi, T.; Sugimoto, Y.; Ushikubi, F.; Ichikawa, A.;
Narumiya, S.; Ito, S. Br. J. Pharmacol. 2001, 133, 438; (f) Mebane, H.; Turnbach,
M. E.; Randich, A. J. Pain 2003, 4, 392.
7. Hall, A.; Billinton, A.; Giblin, G. M. P. Curr. Opin. Drug Disc. Dev. 2007, 10, 597.
8. Sarkar, S.; Hobson, A. R.; Hughes, A.; Growcott, J.; Woolf, C. J.; Thompson, D. G.;
Aziz, Q. Gastroenterology 2003, 124, ‘8.
9. (a) Lee, T.; Hedlund, P.; Newgreen, D.; Andersson, K.-E. J. Urol. 2007, 177, 1562;
(b) Schröder, A.; Newgreen, D.; Andersson, K.-E. J. Urol. 2004, 172, 1166.
10. (a) Kawano, T.; Anrather, J.; Zhou, P.; Park, L.; Wang, G.; Frys, K. A.; Kunz, A.;
Cho, S.; Orio, M.; Iadecola, C. Nat. Med. 2006, 122, 225; (b) Ahmad, A. S.; Saleem,
S.; Ahmad, M.; Dore´, S. Toxicol. Sci. 2006, 89, 265.
11. Giblin, G. M. P.; Bit, R. A.; Brown, S. H.; Chaignot, H. M.; Chowdhury, A.;
Chessell, I. P.; Clayton, N. M.; Coleman, T.; Hall, A.; Hammond, B.; Hurst, D. N.;
Michel, A. D.; Naylor, A.; Novelli, R.; Scoccitti, T.; Spalding, D.; Tang, S. P.;
Wilson, A. W.; Wilson, R. Bioorg. Med. Chem. Lett. 2007, 17, 385–389.
12. Hall, A.; Brown, S. H.; Budd, C.; Clayton, N. M.; Giblin, G. M. P.; Goldsmith, P.;
Hayhow, T. G.; Hurst, D. N.; Naylor, A.; Rawlings, D. A.; Scoccitti, T.; Wilson, A.
W.; Winchester, W. J. Bioorg. Med. Chem. Lett. 2009, 19, 497.
13. McKeown, S. C.; Hall, A.; Giblin, G. M. P.; Lorthioir, O.; Blunt, R.; Lewell, X. Q.;
Wilson, R. J.; Brown, S. H.; Chowdhury, A.; Coleman, T.; Watson, S. P.; Chessell,
I. P.; Pipe, A.; Clayton, N.; Goldsmith, P. Bioorg. Med. Chem. Lett. 2006, 16, 4767.
14. Wilson, A. W.; Medhurst, S. J.; Dixon, C. I.; Bontoft, N. C.; Winyard, L. A.;
Brackenborough, K. T.; De Alba, J.; Clarke, C. J.; Gunthorpe, M. J.; Hicks, G. A.;
Bountra, C.; McQueen, D. S.; Chessell, I. P. Eur. J. Pain 2006, 10, 537.
15. (a) Mao, B.; Abrahim, A.; Ge, Z.; Ellison, D. K.; Hartman, R.; Prabu, S. V.; Reamer,
R. A.; Wyvratt, J. J. Pharmaceut. Biomed. 2002, 28, 1101; (b) Hartman, R.;
Abrahim, A.; Clausen, A.; Mao, B.; Crocker, L. S.; Ge, Z. J. Liq. Chromatogr. R. T.
2003, 26, 2551.
minations, Table 7. The metabolic stability in hepatocytes and S9
again failed to predict the in vivo metabolic stability in the rat
and monkey and did not therefore help understand this mismatch.
As a result of this, compound 8h was progressed to a human micro-
dose study in order to assess the human pharmacokinetics.25
It was found that the synthetic route in Scheme 1 was not suit-
able to support large scale synthesis of 8. Thus, an alternative route
employing a Suzuki reaction as the key step was developed,
Scheme 2, and was used to supply more than 100 g of compound.
Commercially available 4-chloro-2-iodoanisole (10) was demethy-
lated with boron tribromide to give the corresponding phenol 11 in
high yield. Alkylation of the phenol and subsequent halogen-metal
exchange using Knochel’s conditions,26 followed by reaction with
trimethylborate gave boronic acid 12. Suzuki–Miyaura coupling27
of 12 with the chloromethylpyridine derivative 14 delivered the
ester in moderate yield, which underwent ester hydrolysis to give
8h as the sodium salt.28 Intermediate 14 was prepared from diacid
13 as outlined in Scheme 2 and was used without purification.
The selectivity of compound 8h was profiled at a number of
prostaglandin and thromboxane targets (EP2 pIC50 5.8, EP3 FLIPR
pKi 5.9, EP4 pIC50 < 5, FP pIC50 < 5, IP pIC50 < 6, TP pKi 8.0, COX-1
pIC50 < 4.5, COX-2 pIC50 < 4) where it showed good selectivity ex-
cept for the thromboxane A2 (TP) receptor. No data was generated
against the DP1 or DP2 (CRTH2) receptors, however, in general
compounds from this programme were found to be inactive at
the DP1 receptor, for example, GW848687X displayed >400-fold
selectivity over the DP1 receptor.11 When screened against a panel
of 50 receptors, enzymes and ion channels (Cerep, France) at 1 lM,
16. Knochel, P.; Yeh, C. M. P.; Berk, S. C.; Talbert, J. J. Org. Chem. 1988, 53, 2390.
17. Knochel, P.; Singer, R. D. Chem. Rev. 1993, 93, 2117.
18. Hall, A.; Bit, R. A.; Brown, S. H.; Chowdhury, A.; Giblin, G. M. P.; Hurst, D. N.;
Kilford, I. R.; Lewell, X.; Naylor, A.; Scoccitti, T. Bioorg. Med. Chem. Lett. 2008, 18,
1592.
compound 8h showed no significant activity (inhibition 6 30%).
Compound 8h had a low risk of QT interval prolongation, mediated
by blockade of the hERG channel, dofetilide binding pIC50 < 4.5
(IC50 > 32 lM).
19. Clarke, S. E.; Jeffrey, P. Xenobiotica 2001, 31, 591.
In summary, we have described the identification of compound
8h (GSK269984A) which overcame the major issues that precluded
development of previous EP1 antagonists. Compound 8h was se-
lected as a development candidate for the treatment of inflamma-
tory pain and was progressed to a human microdose study. Full
details of the in vivo biological profile and the human microdose
PK data will be the subject of future publications.
20. For Schild analysis, the effect of various single concentrations of antagonist on
PGE2 concentration response curves were observed in a luciferase reporter
assay. Antagonist concentrations between the pIC50 value and maximum
response were incubated with
a concentration range of PGE2 and cells
containing the human EP1 receptor and an NFAT reporter gene for 4 h at
37 °C, 5% CO2 and 95% humidity. Following incubation, reporter gene activity
was assessed by addition of a luciferin substrate and the subsequent light
response measured in a luminescence counter, as an indication of EP1 function.
For further details see: (a) Schild, H. O. Br. J. Pharmacol. Chemother. 1949, 4, 277;
(b) Arunlakshana, O.; Schild, H. O. Br. J. Pharmacol. Chemother. 1959, 14, 48.
21. Crespi, C. L.; Miller, V. P.; Penman, B. W. Anal. Biochem. 1997, 248, 188.
22. Hall, A.; Brown, S. H.; Chessell, I. P.; Chowdhury, A.; Clayton, N. M.; Coleman, T.;
Giblin, G. M. P.; Hammond, B.; Healy, M. P.; Johnson, M. R.; Metcalf, A.; Michel,
A. D.; Naylor, A.; Novelli, R.; Spalding, D. J.; Sweeting, J.; Winyard, L. Bioorg.
Med. Chem. Lett. 2007, 17, 916.
Acknowledgements
The authors thank Helen Hooper, Lee Abberley, Alison Gilbert,
Karen Davies, Barry Passingham, Teresa Heslop, Sadhia Mahmood,