F. Zeng et al. / Bioorg. Med. Chem. Lett. 16 (2006) 3015–3018
3017
3
SCWM
Frontal CX
Cere
2.5
2
1.5
1
0.5
0
0
20
40
60
80
100
120
Time (min)
Figure 4. Time–activity curves of brain regions for [18F]FPPIP in a
rhesus monkey.
imaging agent for Ab, based on its favorable pharma-
cokinetics in a rhesus monkey and its high specific
labeling of Ab plaques in vitro. However, more work
is required to refine this structure in order to increase
binding affinity.
Figure 3. Comparison between plaques visualized by [18F]FPPIP
autoradiography and Ab immunohistochemistry. (A) Film autoradio-
gram of [18F]FPPIP displays selective in vitro binding to Ab plaques in
AD brain sections. (B) The same labeled plaques are confirmed by
immunohistochemistry with 4G8. (C) and (D) Images of those regions
demarcated by the rectangles in (A) and (B) were magnified,
respectively, and arrows demarcate the same distribution of plaques.
References and notes
clearly observed in cortical gray matter, but not in the
white matter, and the specific binding was eliminated
in the AD specimen with the pretreatment with nonra-
dioactive FPPIP (data not shown). The control brain
sections showed no specific binding, correlating well
with the absence of amyloid plaques in these brains.
To confirm the [18F]FPPIP-labeled plaques at a micro-
scopic level and to determine the specificity of [18F]FPPIP
binding for Ab plaques, AD brain sections labeled with
[18F]FPPIP were subsequently immunostained with a
monoclonal antibody (4G8, Signet, MA) specific for
b-amyloid proteins.19 Clearly, [18F]FPPIP labeled all of
the plaques detected by 4G8 on AD brain sections and a
good correlation with Ab plaques’ labeling was demon-
strated (marked with arrowheads).
1. Klunk, W. E.; Abraham, D. J. Psychol. Dev. 1988, 6, 121.
2. Hardy, J.; Selkoe, D. J. Science 2002, 297, 353.
3. Mathis, C. A.; Wang, Y.; Holt, D. P.; Huang, G.; Debnath,
M. L.; Klunk, W. E. J. Med. Chem. 2003, 46, 2740.
4. Wang, Y.; Klunk, W. E.; Debnath, M. L.; Huang, G. F.;
Holt, D. P.; Shao, L.; Mathis, C. A. J. Mol. Neurosci.
2004, 24, 55.
5. Verhoeff, N. P.; Wilson, A. A.; Takeshita, S.; Trop, L.;
Hussey, D.; Singh, K.; Kung, H. F.; Kung, M.-P.; Houle,
S. Am. J. Geriatr. Psychiatr. 2004, 12, 584.
6. Ono, M.; Wilson, A.; Nobrega, J.; Westaway, D.;
Verhoeff, P.; Zhuang, Z.-P.; Kung, M.-P.; Kung, H. F.
Nucl. Med. Biol. 2003, 30, 565.
7. Agdeppa, E. D.; Kepe, V.; Liu, J.; Flores-Torres, S.;
Satyamurthy, N.; Petric, A.; Cole, G. M.; Small, G. W.;
Huang, S. C.; Barrio, J. R. J. Neurosci. 2001, 21, RC189.
8. Nordberg, A. Lancet Neurol. 2004, 3, 519.
The micro-PET imaging study of [18F]FPPIP to assess
brain penetration of the radiolabeled derivatives was
performed in a rhesus monkey that presumably had no
amyloid deposits in its brain. Thus, this experiment re-
flects brain entry and clearance from normal brain tis-
sue. The time–activity curves shown in Figure 4
indicate that [18F]FPPIP easily penetrates the blood–
brain barrier after intravenous injection, with peak value
(SUV) of 1.6–2.7 at 9 min. Relatively fast nonspecific
binding clearance was observed with the radioactivity
ratios of peak—to -105 min 2.6, 1.9, and 2.0 in cerebel-
lum, frontal cortex, and subcortical white matter devoid
of specific binding sites. No bone uptake of radioactivity
was observed in the skull after the intravenous adminis-
tration of [18F]FPPIP to the monkey, indicative of low
in vivo defluorination.
9. Zhuang, Z.-P.; Kung, M. P.; Hou, C.; Plossl, K.;
Skovronsky, D. M.; Gur, T.; Trojanowski, J. Q.; Lee, V.
M.; Kung, H. F. Nucl. Med. Biol. 2001, 28, 887.
10. Kung, M. P.; Hou, C.; Zhuang, Z.-P.; Zhang, B.;
Skovronsky, D. M.; Gur, T.; Lee, V. M.-Y.; Trojanowski,
J. Q.; Kung, H. F. Brain Res. 2002, 956, 202.
11. Zhuang, Z. P.; Kung, M-P.; Wilson, A.; lee, C. W.; Plossl,
K.; Hou, C.; Holtzman, D. M.; Kung, H. F. J. Med.
Chem. 2003, 46, 237.
12. Cai, L.; Chin, F. T.; Pike, V. W.; Toyama, H.; Liow, J.-S.;
Zoghbi, S. S.; Modell, K.; Briard, E.; Shetty, U. H., et al.
J. Med. Chem. 2004, 47, 2208.
13. Lee, C.-W.; Kung, M.-P.; Hou, C.; Kung, H. F. Nucl.
Med. Biol. 2003, 30, 573.
14. Zhang, W.; Oya, S.; Kung, M.-P.; Hou, C.; Maier, D. L.;
Kung, H. F. J. Med. Chem. 2005, 48, 5980.
15. Diwu, Z.; Beachdel, C.; Klaubert, D. H. Tetrahedron Lett.
1998, 39, 4987.
16. For the quantitative autoradiography, we modified the
binding protocol used by Kung et al. See: (a) Kung, M. P.;
Hou, C.; Zhuang, Z.-P.; Skovronsky, D.; Kung, H. F.
Brain Res. 2004, 1025, 98; and performed calibrated
In summary, two new Ab plaque ligands, FEPIP and
FPPIP, have been synthesized and biologically evaluat-
ed. [18F]FPPIP is a promising candidate as PET