2516
S. Das et al. / Journal of Organometallic Chemistry 691 (2006) 2512–2516
(b) E.M. Breitung, C.F. Shu, R.J. McMahon, J. Am. Chem. Soc. 122
The absorption spectra of the Zn(II) complexes show
(2000) 1154;
blue shift with a broadening compare to its monomeric
counterparts L1–L3 that can attributable from several
interactions between the 1D NLO-phores such as electro-
static or p–p cofacial interactions [20], excitanic coupling
[21], hindered solvation or aggregation effects within the
Zn(II) complex. As the harmonic wavelength is far enough
from the kcut-off for the ligands as well as their Zn(II) com-
plexes, any contribution of two-photon-induced fluores-
cence to the HRS signal can be considered as negligible.
Table 1 shows that 2 possesses higher b value compared
to 1 whereas 3 exhibits the highest b value among the three.
The Zn(II) ion organizes two 1D NLO-phores ligands
around leads to strong dipolar interactions enhancing the
polarizability of the complex unit which can significantly
affect in the marked increase of the b values of the com-
plexes compared to the 1D chromophores underlying the
importance of metal ions in modulating the optical
nonlinearity.
(c) L. Groenendaal, M.J. Bruining, E.H.J. Hendrickx, A. Persoons,
J.A.J.M. Vekemans, E.E. Havinga, E.W. Meijer, Chem. Mater. 10
(1998) 226;
(d) P. Gangopadhyay, T.P. Radhakrishnan, Angew. Chem. Int. Ed.
40 (2001) 2451;
(e) D.J. Williams, Angew. Chem. Int. Ed. Engl. 23 (1984) 690.
[3] (a) L.-T. Cheng, W. Tam, S.H. Stevenson, G.R. Meredith, G.
Rikken, S.R. Marder, J. Phys. Chem. 95 (1991) 10631;
(b) J. Zyss, S. Brasselet, J. Chem. Phys. 109 (1998) 658.
[4] J. Zyss, Nonlinear Opt. 1 (1991) 3.
[5] (a) C. Lambert, E. Schma¨lzlin, K. Meerholz, C. Brauchle, Chem.
Eur. J. 4 (1998) 512;
(b) E. Kelderman, W.A.J. Starmans, J.P.M. Van Duynhoven, W.
Verboom, J.F.J. Engbersen, D.N. Reinhoudt, L. Derhaeg, T.
Verbiest, K. Clays, A. Persoons, Chem. Mater. 6 (1994) 412;
(c) S. Brasselet, F. Cherioux, P. Audebert, J. Zyss, Chem. Mater. 11
(1999) 1915.
[6] (a) P. Mukhopadhyay, P.K. Bharadwaj, G. Savitha, A. Krishnan,
P.K. Das, J. Mater. Chem. 12 (2002) 2237;
(b) R. Wortmann, C. Glania, P. Kra¨mer, R. Matschiner, J.J. Wolff,
S. Kraft, B. Treptow, E. Barbu, D. La¨ngle, G. Go¨rlitz, Chem. Eur.
J. 3 (1997) 1765.
[7] (a) J.J. Wolff, F. Siegler, R. Matschiner, R. Wortmann, Angew.
Chem. Int. Ed. 39 (2000) 1436;
7. Conclusion
(b) A.M. McDonagh, M.G. Humphrey, M. Samoc, B.L. Davies, S.
Houbrechts, T. Wada, H. Sasabe, A. Persoons, J. Am. Chem. Soc.
121 (1999) 1405.
In conclusion, we have shown that a simple synthetic
strategy to obtained 2D dipolar Zn(II) complexes from
1D push–pull NLO-phoric ligands via metal-template effect
with very large second-order optical nonlinearity (b val-
ues). The monomeric 1D dipolar ligands themselves do
not exhibit any significant b values but readily form com-
plexes with Zn(II) ion resulting various 2D dipolar struc-
tures that shows significantly high b values in comparison
to the monomeric 1D dipolar counterparts underlying the
importance of the Zn(II) ion in the spontaneous self-orga-
nization of the 1D dipolar NLO-phores within the com-
plexes. The high thermal stability and large optical
nonlinearity of these complexes offer them potential candi-
date as a NLO materials. We are presently working with
metal mediated second as well as third-order nonlinear
optical properties where the metal ions are taken from both
the transition and the inner transition series.
[8] E. Kelderman, W.A.J. Starmans, J.P.M. van Duynhoven, W. Ver-
boom, J.F.J. Engbersen, D.N. Reinhoudt, Chem. Mater. 6 (1994) 412.
[9] E.D. Reka¨ı, J.B. Baudin, L. Jullien, I. Ledoux, J. Zyss, M.B. Desce,
Chem. Eur. J. 7 (2001) 4395.
[10] N. Nemoto, F. Miyata, Y. Nagase, J. Abe, M. Hasegaya, Y. Shirai,
Chem. Mater. 9 (1997) 304.
[11] S. Yokoyama, T. Nakahama, A. Otomo, S. Mashiko, J. Am. Chem.
Soc. 122 (2000) 3174.
[12] (a) N.J. Long, Angew. Chem. Int. Ed. Engl. 34 (1995) 21;
(b) O.R. Evans, W. Lin, Acc. Chem. Res. 35 (2002) 511.
[13] (a) K. Senechal, O. Maury, H.L. Bozec, I. Ledoux, J. Zyss, J. Am.
Chem. Soc. 124 (2002) 4560;
´ ´
´
(b) O. Maury, L. Viau, K. Senechal, B. Corre, J.-P. Guegan, T.
Renouard, I. Ledoux, J. Zyss, H.L. Bozec, Chem. Eur. J. 10 (2004)
4454.
[14] (a) K. Clays, A. Persoons, Phys. Rev. Lett. 66 (1991) 2980;
(b) K. Clays, A. Persoons, Rev. Sci. Instrum. 63 (1992) 3285;
(c) K. Clays, A. Persoons, Adv. Chem. Phys. 3 (1993) 456.
[15] T. Kodaira, A. Watanabe, O. Ito, M. Matsuda, K. Clays, A.
Persoons, J. Chem. Soc., Faraday Trans. 93 (1997) 3039.
[16] (a) S. Das, P.K. Bharadwaj, Crystal Growth & Design 6 (2006) 187;
(b) K. Nakamoto, Infrared and Raman Spectra of Inorganic and
Coordination Compounds, Part B: Applications in Coordination,
Organometallic, and Bioinorganic Chemistry, fifth ed., Wiley, New
York, 1997.
Acknowledgements
Financial support received from DRDO, India (to PKB)
is gratefully acknowledged.
[17] See supplementary material.
References
[18] B.J. Orr, J. Ward, Mol. Phys. 20 (1971) 513.
[19] S.R. Marder, B. Klppelen, A.K.-Y. Jen, N. Peyghambarian, Nature
388 (1997) 854.
[1] (a) D.S. Chemla, J. Zyss (Eds.), Nonlinear Optical Properties of
Organic Molecules and Crystals, vols. 1 and 2, Academic, Orlando,
FL, 1987;
`
´
[20] (a) E. Brouyere, A. Persoons, J.L. Bredas, J. Phys. Chem. A 101
(1997) 4142;
(b) S. Di Bella, M.A. Ratner, T.J. Marks, J. Am. Chem. Soc. 114
(1992) 5842.
(b) J. Zyss, Molecular Nonlinear Optics: Materials, Physics and
Devices, Academic Press, Boston, 1994;
[21] (a) L. Lu, R.J. Lachicotte, T.L. Penner, J. Perlstein, D.G. Whitten, J.
Am. Chem. Soc. 121 (1999) 8146;
(c) P.N. Prasad, D.J. Williams, Introduction to Nonlinear Optical
Effects in Molecules and Polymers, Wiley, New York, 1991;
(d) S.R. Marder, B. Kippelen, A.K.-Y. Jen, N. Peyghambarian,
Nature 388 (1997) 845.
(b) C. Lambert, E. Schma¨lzin, K. Meerholz, C. Bra¨uchle, Chem.
Eur. J. 4 (1998) 512;
(c) M. Kasha, H.R. Rawls, M. Ashraf El-Bayoumi, Pure. Appl.
Chem. 11 (1965) 371.
[2] (a) J.-M. Raimundo, P. Blanchard, N.G. Planas, N. Mercier, I.L.
Rak, R. Hierle, J. Roncali, J. Org. Chem. 67 (2002) 205;