4070
M.H. Garcia et al. / Journal of Organometallic Chemistry 690 (2005) 4063–4071
5H, g5-C5H5), 6.95 (d, 2H, H2, H6, 3JHH = 8.7), 7.45 (t,
2H, H3, H5, 3JHH = 7.8), 7.72 (d, H, H4). 13C NMR (d-
acetone, d): 94.84 (g5-C5H5), 109.75 (C1), 129.82 (C3,
C5), 134.14 (C2, C6), 136.47 (C4), 140.36 (NC). 31P
NMR (d-acetone, d): 81.04. Anal. Calc. for
C38H34NP4F12Co: C, 49.80; H, 3.74; N, 1.53. Found:
C, 49.70; H, 3.90; N, 1.53%.
in solute and 0.1 M in tetrabutylammonium hexafluoro-
phosphate as supporting electrolyte. The electrochemi-
cal system was checked with a 1 mM solution of
ferrocene in acetonitrile and dichloromethane for which
the ferrocinium/ferrocene electrochemical parameters
(Ep/2 = 0.38 V in acetonitrile and Ep/2 = 0.41 V in dichlo-
romethane; DE = 60ꢀ70 mV; ia/ic = 1) were in good
agreement with the literature [31,32].
4.2.4. [CoCp(dppe)(p-NCC6H4C6H4NO2)][PF6]2 (6)
Red crystals; 81% yield, m.p. 154 ꢁC (dec.). Molar
conductivity (Xꢀ1 cm2 molꢀ1): 177.8. IR (KBr, cmꢀ1):
(N„C): 2265. 1H NMR (d-acetone, d): 6.38 (s, 5H,
The electrolyte was purchased from Sigma–Aldrich,
recrystallized from ethanol, washed with diethyl ether,
and dried under vacuum at 110 ꢁC for 24 h. Reagent
grade acetonitrile and dichloromethane were dried over
P2O5 and CaH2, respectively, and distilled before use
under argon atmosphere. An argon atmosphere was
maintained over the solution during the experiments.
3
g5-C5H5), 7.11 (d, 2H, H2, H6, JHH = 8.7), 7.88 (d,
3
2H, H3, H5, JHH = 9.0), 7.98 (d, 2H, H8, H12,
3JHH = 8.7), 8.35 (d, 2H, H9, H11). 13C NMR (d-ace-
tone, d): 94.95 (g5-C5H5), 109.77 (C1), 124.94 (C9,
C11), 128.66 (C3, C5), 129.44 (C8, C12), 134.83 (C2,
C6), 141.08 (NC), 145.16 (C4), 145.95 (C7), 148.99
(C10). 31P NMR (d-acetone, d): 80.85. Anal. Calc. for
C44H37N2O2P4F12Co: C, 50.93; H, 3.59; N, 2.70. Found:
C, 51.46; H, 3.56; N, 2.82%.
Acknowledgements
ˆ
We thank to Fundac¸a˜o para a Ciencia e Tecnologia
for finantial support (POCTI/QUI/48433/2002).
4.2.5. [CoCp(dppe)(p-NCC6H4NO2)][PF6]2 (7)
Red crystals; 65% yield, m.p. 174 ꢁC (dec.). Molar
conductivity (ꢀ1cm2molꢀ1): 173.2. IR (KBr, cmꢀ1):
References
[1] H.S. Nalwa, Appl. Organomet. Chem. 5 (1991) 349.
[2] N.J. Long, Angew. Chem., Int. Ed. Engl. 34 (1995) 21.
[3] S.R. Marder, in: D.W. Bruce, D. OÕHare (Eds.), Inorganic
Materials, second ed., Wiley, Chichester, 1996, p. 121.
[4] I.R. Whittall, A.M. McDonagh, Mark G. Humphrey, M. Samoc,
Adv. Organomet. Chem. 42 (1998) 291.
1
(N„C) 2275. H NMR (d-acetone, d): 6.40 (s, 5H, g5-
3
C5H5), 7.28 (d, 2H, H2, H6, JHH = 8.7), 8.26 (d, 2H,
3
H3, H5, JHH = 8.7). 13C NMR (d-acetone, d): 95.15
(g5-C5H5), 115.50 (C1), 124.58 (C3, C5), 135.78 (C2,
C6), 140.81 (NC), 152.10 (C4). 31P NMR (d-acetone,
d): 80.75. Anal. Calc. for C38H33N2O2P4F12Co: C,
47.53; H, 3.46; N, 2.92. Found: C, 46.91; H, 3.37; N,
2.90%.
[5] E. Goovaerts, W.E. Wenseleers, M.H. Garcia, G.H. Cross, in: H.S.
Nalwa (Ed.), Handbook of Advanced Electronic and Photonic
Materials, vol. 9, Academic Press, 2001, p. 127 (Chapter 3).
[6] S. Di Bella, Chem. Soc. Rev. 30 (2001) 355.
[7] A.R. Dias, M.H. Garcia, M.P. Robalo, M.L.H. Green, K.K. Lai,
A.J. Pulham, S.M. Klueber, G. Balavoine, J. Organomet. Chem.
453 (1993) 241.
4.2.6. [CoCp(dppe)(NCCH3)][PF6]2 (8)
Red crystals; 59% yield, m.p. 147 ꢁC (dec.). Molar
conductivity (Xꢀ1 cm2 molꢀ1): 192.6. IR (KBr, cmꢀ1):
(N„C) 2260. 1H NMR (d-acetone, d): 1.93 (s, 3H,
CH3), 6.19 (s, 5H, g5-C5H5), Anal. Calc. for
C33H32NP4F12Co: C, 46.44; H, 3.78; N, 1.64. Found:
C, 46.16; H, 3.63; N, 1.62%.
[8] M.H. Garcia, M.P. Robalo, A.R. Dias, M.F.M. Piedade, A.
Galva˜o, M.T. Duarte, W. Wenseleers, E. Goovaerts, J. Organo-
met. Chem. 619 (2001) 252.
[9] A.R. Dias, M.H. Garcia, J.C. Rodrigues, M.L.H. Green, S.M.
Kuebler, J. Organomet. Chem 475 (1994) 241.
´
[10] M.H. Garcia, J.C. Rodrigues, A.R. Dias, M. Fatima, M. Piedade,
M.T. Duarte, M.P. Robalo, Nelson Lopes, J. Organomet. Chem.
632 (2001) 133.
[11] W. Wenseleers, E. Goovaerts, A. Bouwen, M.H. Garcia, M.P.
Robalo, P.J. Mendes, A.R. Dias, Dissertation Abstracts Internat.
B60 (2000) 4038.
4.3. Electrochemical experiments
The electrochemistry instrumentation consisted of a
EG&A Princeton Applied Research Model 273A Poten-
tiometer and experiments were monitored in a PC com-
puter loaded with Model 270 Electrochemical Analysis
Software 3.00 of EG&A from Princeton Applied
Research. Potentials were referred to a calomel electrode
containing a saturated solution of potassium chloride.
The working electrode was a 2-mm piece of platinum
wire for voltammetry. The secondary electrode was a
platinum wire coil. Cyclic voltammetry experiments
were performed at room temperature and ꢀ20 ꢁC in a
PAR polarographic cell. Solutions studied were 1 mM
[12] M.H. Garcia, M.P. Robalo, A.R. Dias, M.T. Duarte, W.
Wenseleers, G. Aerts, E. Goovaerts, M.P. Cifuentes, S. Hurst,
M.G. Humphrey, M. Samoc, B. Luther-Davies, Organometallics
21 (2002) 2107.
[13] I.R. Whittall, M.G. Humphrey, A. Persoons, S. Houbrechts,
Organometallics 15 (1996) 1935.
[14] I.R. Whittall, M.G. Humphrey, S. Houbrechts, A. Persoons,
D.C.R. Hockless, Organometallics 15 (1996) 5738.
[15] I.R. Whittall, M.P. Cifuentes, M.G. Humphrey, B. Luther-
Davies, M. Samoc, S. Houbrechts, A. Persoons, G.A. Heath,
D.C.R. Hockless, J. Organomet. Chem. 549 (1998) 127.
[16] W. Wenseleers, A.W. Gerbrandij, E. Goovaerts, M.H. Garcia,
M.P. Robalo, P.J. Mendes, J.C. Rodrigues, A.R. Dias, J. Mater.
Chem. 8 (1998) 925.