that the weaker reducing agent, InI, does not react with the
diyne.
7 J. D. Corbett and R. K. McMullan, J. Am. Chem. Soc., 1955, 77,
4217; see also: J. R. Chadwick, A. W. Atkinson and B. G. Huckstepp,
J. Inorg. Nucl. Chem., 1966, 28, 1021.
8 M. Wilkinson and I. J. Worrall, J. Organomet. Chem., 1975, 93, 39.
9 C. Gerlach, W. Ho¨nle and A. Simon, Z. Anorg. Allg. Chem., 1982,
486, 7.
In contrast to the reactions of either diazabutadienes or
bis(imino)pyridines with “GaI” (which gave 7, 11 and 12), the
=
treatment of the mono(imino)pyridines, RN C(H)Py (Py = 2-
pyridyl, R = C6H3Pri2-2,6 or But), with the gallium reagent led
to the coupled products, 48 and 49.16 As with the formation of
46 and 47, the reaction mechanism is thought to involve a com-
bination of imine reduction and disproportionation reactions to
yield the intermediates, [GaI2{RNC•(H)Py}], two equivalents
of which subsequently couple. The molecular structures of
48 and 49 confirmed the C–C bond formations and revealed
that both compounds exist as their meso-isomers. The most
unusual feature of these structures is that the newly formed
10 S. Coban, Diplomarbeit, Universita¨t Karlsruhe, 1999.
11 A. Schnepf, C. Doriat, E. Mo¨llhausen and H. Schno¨ckel, Chem.
Commun., 1997, 2111.
12 R. J. Baker, H. Bettentrup and C. Jones, Eur. J. Inorg. Chem., 2003,
2446.
13 R. J. Baker, H. Bettentrup and C. Jones, Inorg. Chem. Commun.,
2004, 7, 1289.
14 C. Jones, C. Schulten and A. Stasch, Main Group Met. Chem., in
press.
15 R. J. Baker, R. D. Farley, C. Jones, M. Kloth and D. M. Murphy,
Chem. Commun., 2002, 1196.
16 R. J. Baker, C. Jones, M. Kloth and D. P. Mills, New. J. Chem., 2004,
28, 207.
17 C. Jones and M. Waugh, Dalton Trans., 2004, 1971.
18 R. J. Baker, R. D. Farley, C. Jones, M. Kloth and D. M. Murphy,
J. Chem. Soc., Dalton Trans., 2002, 3844. For an alternative synthesis
of a related anionic Ga(I) heterocycle, see: E. S. Schmidt, A. Jockisch
and H. Schmidbaur, J. Am. Chem. Soc., 1999, 121, 9758; E. S.
Schmidt, A. Schier and H. Schmidbaur, J. Chem. Soc., Dalton Trans.,
2001, 121, 505.
C–C bonds are longer than normally expected for C(sp3)–
3
˚
C(sp ) interactions [viz. 1.603(5) and 1.581(7) A for 48 and
49, respectively]. In comparison, the related reactions of imino-
pyridines with the weaker reductant, InCl, were shown not
to proceed via C–C couplings and, instead, gave only InCl3
2
i
=
adducts, e.g. [InCl3{g -N(C6H3Pr 2-2,6) C(H)Py}(THF)], by
disproportionation processes.
19 T. Pott, P. Jutzi, W. Kaim, W. W. Schoeller, B. Neumann, A. Stamm-
ler, H.-G. Stammler and M. Wanner, Organometallics, 2002, 21,
3169.
20 R. J. Baker, R. D. Farley, C. Jones, D. P. Mills, M. Kloth and D. M.
Murphy, Chem. Eur. J., in press.
21 K. L. Antcliff, R. J. Baker, C. Jones, D. M. Murphy and R. P. Rose,
Inorg. Chem., in press.
22 (a) R. J. Baker, C. Jones and J. A. Platts, Dalton Trans., 2003, 3673;
(b) R. J. Baker, C. Jones and J. A. Platts, J. Am. Chem. Soc., 2003, 125,
10534; (c) R. J. Baker, C. Jones, M. Kloth and J. A. Platts, Angew.
Chem., Int. Ed., 2003, 43, 2660; (d) R. J. Baker, C. Jones, M. Kloth
and J. A. Platts, Organometallics, 2004, 23, 4811; (e) R. J. Baker, C.
Jones and D. M. Murphy, Chem. Commun., 2005, 1339.
23 R. J. Baker and C. Jones, Coord. Chem. Rev., in press.
24 N. J. Hardman, B. E. Eichler and P. P. Power, Chem. Commun., 2000,
1991.
25 M. Stender, B. E. Eichler, N. J. Hardman, P. P. Power, J. Prust, M.
Noltemeyer and H. W. Roesky, Inorg. Chem., 2001, 40, 2794.
26 H. V. R. Dias and W. Jin, Inorg. Chem., 1996, 35, 6546.
27 M. C. Kuchta, J. B. Bonanno and G. Parkin, J. Am. Chem. Soc., 1996,
118, 10914.
4
Conclusion and future directions
The study of compounds containing p-block elements in a low
oxidation state is one of the most rapidly expanding areas of
main group chemistry. The advancement of this field requires
the ready availability of low oxidation state element halide
precursors. In group 13 the “true” gallium(I) halide complexes
of Schno¨ckel have allowed major advances to be made by his
group, especially in cluster chemistry. However, the development
of a facile synthetic route to “GaI” by Green et al. in 1990 has
allowed many other synthetic chemists entry to the fascinating
discipline of low oxidation state gallium chemistry. This easy
to prepare and handle reagent is being employed for an ever
increasing number of synthetic tasks that are either difficult or
indeed impossible to carry out by other methods. Many of the
products of these syntheses have themselves proved invaluable
as precursors in a diversity of reactions. This will only increase
into the future. Perhaps the greatest potential “GaI” holds is
as a specialist reducing agent for organic transformations, an
area which has only just begun to be explored. In addition, it is
certain there would be no main group chemist who would not
relish the opportunity to explore the synthetic possibilities that
a readily accessible “Al(I) halide” reagent would offer. Whether
such a reagent will appear remains to be seen.
28 H. V. R. Dias and W. Jin, Inorg. Chem., 2000, 39, 815.
29 S. Anfang, J. Grebe, M. Mo¨hlen, B. Neumu¨ller, N. Faza, W. Massa,
J. Magull and K. Dehnicke, Z. Anorg. Allg. Chem., 1999, 625,
1395.
30 P. Jutzi and L. O. Schebaum, J. Organomet. Chem., 2002, 654,
176.
31 P. Jutzi, B. Neumann, L. O. Schebaum, A. Stammler and H.-G.
Stammler, Organometallics, 1999, 18, 4462.
32 N. J. Hardman, R. J. Wright, A. D. Phillips and P. P. Power, Angew.
Chem., Int. Ed., 2002, 41, 2843.
33 N. J. Hardman, R. J. Wright, A. D. Phillips and P. P. Power, J. Am.
Chem. Soc., 2003, 125, 2667.
34 J. Su, X.-W. Li, C. Crittendon and G. H. Robinson, J. Am. Chem.
Soc., 1998, 120, 3773.
Acknowledgements
We thank the EPSRC for funding the aspects of the work
reviewed here that were carried out at Cardiff.
35 R. Ponec, G. Yuzhakov, X. Girone´s and G. Frenking,
Organometallics, 2004, 123, 1790, and references therein.
36 D. E. Hibbs, C. Jones and A. F. Richards, J. Chem. Soc., Dalton
Trans., 1999, 3531.
References
1 Chemistry of Aluminium, Gallium, Indium and Thallium, ed.
A. J. Downs, Blackie Academic Press, Glasgow, 1993, ch. 1, 3, 5,
7 and 8.
2 K. G. G. Hopkins and P. G. Nelson, J. Chem. Soc., Dalton Trans.,
1984, 1393, and references therein.
3 C. Dohmeier, D. Loos and H.-G. Schno¨ckel, Angew. Chem., Int. Ed.
Engl., 1996, 35, 129, and references therein.
4 (a) A. Schnepf and H.-G. Schno¨ckel, Angew. Chem., Int. Ed., 2002,
41, 3533; (b) H.-G. Schno¨ckel and A. Schnepf, Adv. Organomet.
Chem., 2001, 47, 235; (c) G. Linti and H.-G. Schno¨ckel, Coord. Chem.
Rev., 2000, 206-207, 285, and references therein.
37 S. Aldridge, C. Jones, P. C. Junk, A. F. Richards and M. Waugh,
J. Organomet. Chem., 2003, 665, 127.
38 C. Jones and A. F. Richards, J. Organomet. Chem., 2001, 629,
109.
39 G. Linti, A. Rodig and W. Ko¨stler, Z. Anorg. Allg. Chem., 2001, 627,
1465.
40 M. Kehrwald, W. Ko¨stlel, A. Rodig, G. Linti, T. Blank and N. Wiberg,
Organometallics, 2001, 20, 860.
41 W. Ko¨stler and G. Linti, Angew. Chem., Int. Ed., 1997, 36, 2644.
42 G. Linti, W. Ko¨stler, H. Piotrowski and A. Rodig, Angew. Chem., Int.
Ed., 1998, 37, 2209.
5 (a) C. Gemel, T. Steinke, M. Cokoja, A. Kempter and R. A. Fischer,
Eur. J. Inorg. Chem., 2004, 4161; (b) R. A. Fischer and J. Weiss,
Angew. Chem., Int. Ed., 1999, 38, 2830, and references therein.
6 M. L. H. Green, P. Mountford, G. J. Smout and S. R. Speel,
Polyhedron, 1990, 9, 2763.
43 G. Linti, S. Coban, A. Rodig and N. Sandholzer, Z. Anorg. Allg.
Chem., 2003, 629, 1329.
44 F. A. Cotton, Rev. Chem. Soc., 1996, 389.
45 A. Schnepf, E. Weckert, G. Linti and H. Schno¨ckel, Angew. Chem.,
Int. Ed., 1999, 38, 3381.
D a l t o n T r a n s . , 2 0 0 5 , 1 3 4 1 – 1 3 4 8
1 3 4 7