Published on Web 05/10/2006
Convergent, Enantioselective Syntheses of Guanacastepenes
A and E Featuring a Selective Cyclobutane Fragmentation1
William D. Shipe† and Erik J. Sorensen*
Contribution from the Frick Chemical Laboratory, Princeton UniVersity,
Princeton, New Jersey 08544-1009
Received February 4, 2006; E-mail: ejs@princeton.edu
Abstract: The evolution of a convergent strategy that led to efficient, enantioselective syntheses of both
natural (+)- and unnatural (-)-guanacastepene E and formal total syntheses of (+)- and (-)-guanacastepene
A is described. A union of five- and six-membered ring intermediates by an efficient π-allyl Stille cross-
coupling reaction was followed by an intramolecular enone-olefin [2 + 2] photocycloaddition and a
stereoelectronically controlled, reductive fragmentation of the resulting cyclobutyl ketone. The latter two
transformations enabled controlled formation of the C-11 quaternary stereocenter and the central seven-
membered ring of the guanacastepenes. An enantiospecific synthesis of the functionalized five-membered
ring vinyl stannane from the monoterpene R-(-)-carvone featuring a carbon-carbon bond forming ring
contraction was also developed.
Introduction
C-C bond is oriented to permit very little overlap with the
π-system of the carbonyl group, whereas the external C-C bond
enjoys excellent overlap. The external bond is thus predisposed
toward fragmentation; it is the bond that fragments selectively
in the presence of reducing metals.
Our laboratory was drawn to this and related examples of
stereoelectronically controlled strained ring fragmentations5,6 and
to the possibility that conjugated cyclobutyl ketones might
undergo analogous reductive ring openings7,8 as we began to
contemplate a strategy for synthesizing the unique molecular
Strain-releasing fragmentations of small rings were among
the earliest reports of free radical rearrangements in organic
chemistry. In 1950, two laboratories proposed a free radical
chain mechanism and a selective fragmentation of a cyclobutyl
carbinyl radical to explain the reaction of â-pinene with
trichloromethyl radical (Scheme 1).2 In this transformation, the
strain intrinsic to a four-membered ring drives the conversion
of one tertiary radical intermediate into another.3,4
Strained rings flanked by carbonyl groups can also be
fragmented under reducing conditions.5 The tactic of generating
angular methyl groups by selective reductive cleavage of the
cyclopropane ring of conjugated cyclopropyl ketones has been
known for more than 40 years and is often utilized in organic
synthesis.6 Interesting reductive ring openings, such as the one
shown in Scheme 2, led to the generalization that the cyclo-
propane bond that is cleaved is the one possessing the maximum
overlap with the π-orbital system of the carbonyl group.6d,e The
rigid structure of carone is such that the internal cyclopropane
(6) For examples of selective, reductive openings of conjugated cyclopropyl
ketones, see: (a) Wehrli, H.; Heller, M. S.; Schaffner, K.; Jeger, O. HelV.
Chim. Acta 1961, 44, 2162-2173. (b) Heller, M. S.; Wehrli, H.; Schaffner,
K.; Jeger, O. HelV. Chim. Acta 1962, 45, 1261-1274. (c) Norin, T. Acta
Chem. Scand. 1963, 17, 738-748. (d) Norin, T. Acta Chem. Scand. 1965,
19, 1289-1292. (e) Dauben, W. G.; Deviny, E. J. J. Org. Chem. 1966, 31,
3794-3798. (f) Fraisse-Jullien, R.; Frejaville, C.; Toure, V. Bull. Chim.
Fr. 1966, 12, 3725-3727. (g) Bellamy, A. J.; Whitham, G. H. Tetrahedron
1968, 24, 247-254. (h) House, H. O.; Blankley, C. J. J. Org. Chem. 1968,
33, 47-53. (i) Hill, R. K.; Morgan, J. W. J. Org. Chem. 1968, 33, 927-
928. (j) Piers, E.; De Wall, W.; Britton, R. W. Can. J. Chem. 1969, 47,
4299-4306. (k) Piers, E.; Britton, R. W.; De Wall, W. Can. J. Chem. 1969,
47, 4307-4312. (l) Monti, S. A.; Bucheck, D. J.; Shepard, J. C. J. Org.
Chem. 1969, 34, 3080-3084. (m) Stork, G.; Uyeo, S.; Wakamatsu, T.;
Grieco, P.; Labovitz, J. J. Am. Chem. Soc. 1971, 93, 4945-4947. (n) Corey,
E. J.; Virgil, S. C. J. Am. Chem. Soc. 1990, 112, 6429-6431. (o) Batey,
R. A.; Motherwell, W. B. Tetrahedron Lett. 1991, 32, 6649-6652. (p)
Kirschberg, T.; Mattay, J. Tetrahedron Lett. 1994, 35, 7217-7220. (q)
Ziegler, F. E.; Zheng, Z. J. Org. Chem. 1990, 55, 1416-1418.
(7) For examples of metal-mediated cleavages of conjugated cyclobutyl ke-
tones, see: (a) Baker, W. R.; Senter, P. D.; Coates, R. M. J. Chem. Soc.,
Chem. Commun. 1980, 21, 1011-1012. (b) Comins, D. L.; Zhang, X.-M.;
Zheng, X. J. Chem. Soc., Chem. Commun. 1998, 22, 2509-2510. (c)
Comins, D. L.; Zheng, X.; Goehring, R. R. Org. Lett. 2002, 4, 1611-
1613.
(8) For examples of selective fragmentations of cyclobutyl carbinyl radicals
in synthesis, see: (a) Crimmins, M. T.; Mascarella, S. W. Tetrahedron
Lett. 1987, 28, 5063-5066. (b) Ziegler, F. E.; Zheng, Z. J. Org. Chem.
1990, 55, 1416-1418. (c) Cossy, J.; Aclinou, P.; Bellosta, V.; Furet, N.;
Baranne-Lafont, J.; Sparfel, D.; Souchaud, C. Tetrahedron Lett. 1991, 32,
1315-1316. (d) Crimmins, M. T.; Dudek, C. M.; Cheung, A. W.-H.
Tetrahedron Lett. 1992, 33, 181-184. (e) Crimmins, M. T.; Wang, Z.;
McKerlie, L. A. Tetrahedron Lett. 1996, 37, 8703-8706. (f) Ziegler, F.
E.; Kover, R. X.; Yee, N. N. K. Tetrahedron Lett. 2000, 41, 5155-5159.
(g) Kakiuchi, K.; Minato, K.; Tsutsumi, K.; Morimoto, T.; Kurosawa, H.
Tetrahedron Lett. 2003, 44, 1963-1966.
† Current address: Merck Research Laboratories, West Point, Penn-
sylvania.
(1) This manuscript is based on the Ph.D. thesis of William D. Shipe, The
Scripps Research Institute, 2004.
(2) (a) Oldroyd, D. M.; Fisher, G. S.; Goldblatt, L. A. J. Am. Chem. Soc. 1950,
72, 2407-2410. (b) Dupont, G.; Dulou, R.; Cle´ment, G. Bull. Soc. Chim.
Fr. 1950, 1056-1057. (c) Dupont, G.; Dulou, R.; Cle´ment, G. Bull. Soc.
Chim. Fr. 1950, 1115-1120.
(3) For selected reviews and discussions of free radical rearrangements, see:
(a) Beckwith, A. L. J. Chem. Soc. Special Pub. No. 24 1970, 239-269.
(b) Yet, L. Tetrahedron 1999, 55, 9349-9403. (c) Newcomb, M.
Tetrahedron 1993, 49, 1151-1176.
(4) For discussions of molecular strain and reactivity in organic chemistry,
see: (a) Wiberg, K. B. Angew. Chem., Int. Ed. Engl. 1986, 25, 312-322.
(b) Wiberg, K. B. Foundations of Chemistry; Kluwer Academic Publish-
ers: Netherlands, 2004; Vol. 6, pp 65-80.
(5) For discussions, see: (a) Staley, S. W. In SelectiVe Organic Transforma-
tions; Thyagarajan, B. S., Ed.; Wiley-Interscience: New York, 1972; Vol.
2, pp 309-348. (b) Wong, H. N. C.; Hon, M.-Y.; Tse, C.-W.; Yip, Y.-C.;
Tanko, J.; Hudlicky, T. Chem. ReV. 1989, 89, 165-198.
9
10.1021/ja060847g CCC: $33.50 © 2006 American Chemical Society
J. AM. CHEM. SOC. 2006, 128, 7025-7035
7025