3878
A. Roy et al. / Tetrahedron Letters 47 (2006) 3875–3879
Antiviral Chem. Chemother. 1998, 9, 389; (b) Golan-
mass, which was then purified by column chromatography
over silica gel (60–120 mesh). Elution with CHCl3–petro-
leum ether (1:1) furnished 12 (1.25 g, 76%). For the
preparation of 13, a mixture of 11 (0.95 g, 2.04 mmol) and
benzyl amine (15 mL) was heated at 110 ꢁC for 10 h. Usual
work-up followed by column chromatography using
EtOAc–petroleum ether (3:22) as eluent yielded 13
(0.55 g, 71%). For 15, oil-free NaH (84 mg) was added
portionwise to a solution of 11 (0.8 g, 1.72 mmol) in
anhydrous DMF (15 mL) and the mixture was heated at
100 ꢁC for 6 h. Excess NaH was destroyed by slow
addition of cold water and the solvent was evaporated.
Usual work-up and purification by chromatography over
silica gel (60–120 mesh) using CHCl3–petroleum ether
(7:3) gave 15 (275 mg, 55%).
kiewicz, B.; Ostrowski, T.; Andrei, G.; Snoeck, R.;
De Clercq, E. J. Med. Chem. 1994, 37, 3187; (c) Agro-
foglio, L.; Suhas, E.; Farese, A.; Condom, R.; Challand, S.
R.; Earl, R. A.; Guedj, R. Tetrahedron 1994, 50, 10611; (d)
Crimmins, M. T. Tetrahedron 1998, 54, 9229; (e) Robins,
R. K.; Kini, G. D. In Chemistry of Antitumor Agents;
Wilman, D. E. V., Ed.; Blackie and Son: UK, 1990; p 299;
(f) Jones, M. F. Chem. Brit. 1988, 1122; (g) Nishiyama, Y.;
Yamamoto, N.; Yamada, Y.; Daikoku, T.; Ichikawa,
Y.-I.; Takahasi, K. J. Antibiot. 1989, 42, 1854; (h)
Norbeck, D. W.; Kern, E.; Hayashi, S.; Rosenbrook,
W.; Sham, H.; Harin, T.; Plattener, J.; Erikson, J.; Clemn,
J.; Swanson, R.; Shipkowitz, N.; Hardy, D.; Marsh, K.;
Artnet, G.; Shannon, W.; Broder, S.; Mitsuya, H. J. Med.
Chem. 1990, 33, 1281.
25
Data for 12: white solid, mp 74–75 ꢁC, ½aꢂD ꢀ82.6 (c 1.3,
2. Haruama, H.; Takayama, T.; Kinoshita, T.; Kondo, M.;
Nakajima, M.; Haneishi, T. J. Chem. Soc. Perkin Trans. 1
1991, 1637.
3. (a) Kittaka, A.; Tanaka, H.; Odanaka, Y.; Ohnuki, K.;
Yamaguchi, K.; Miyasaka, T. J. Org. Chem. 1994, 59,
3636; (b) Kittaka, A.; Tanaka, H.; Yamada, N.;
Miyasaka, T. Tetrahedron Lett. 1996, 37, 2801; (c)
Kittaka, A.; Asakura, T.; Kuze, T.; Tanaka, H.; Yamada,
N.; Nakamura, K. T.; Miyasaka, T. J. Org. Chem. 1999,
64, 7081.
4. (a) Paquette, L. A.; Bibart, R. T.; Seekamp, C. K.;
Kahane, A. L. Org. Lett. 2001, 3, 4039; (b) Paquette, L.
A.; Owen, D. R.; Bibart, R. T.; Seekamp, C. K. Org. Lett.
2001, 3, 4043; (c) Paquette, L. A.; Hartung, R. E.; France,
D. J. Org. Lett. 2003, 5, 869; (d) Paquette, L. A.; Fabris,
F.; Gallou, F.; Dong, S. J. Org. Chem. 2003, 68, 8625; (e)
Paquette, L. A.; Kahane, A. L.; Seekamp, C. K. J. Org.
Chem. 2004, 69, 5555; (f) Dong, S.; Paquette, L. A. J. Org.
Chem. 2005, 70, 1580; (g) Hortung, R.; Paquette, L. A.
J. Org. Chem. 2005, 70, 1597; (h) Paquette, L. A.; Dong, S.
J. Org. Chem. 2005, 70, 5655.
5. (a) Gimisis, T.; Chatgilialoglu, C. J. Org. Chem. 1996, 61,
1908; (b) Gasch, C.; Pradera, M. A.; Salameh, B. A. B.;
Molina, J. L.; Fuentes, J. Tetrahedron: Asymmetry 2001,
12, 1267; (c) Ravindra Babu, B.; Keinicke, L.; Petersen,
M.; Nielsen, C.; Wengel, J. Org. Biomol. Chem. 2003, 1,
3514.
CHCl3) [found: C, 62.08; H, 6.43. C16H20O4S requires C,
62.31; H, 6.54]; IR (KBr): mmax 1451, 1380, 1211, 1102,
1075, 859, 740 cmꢀ1; 1H NMR (CDCl3, 300 MHz): d 1.28
and 1.46 (2 · s, 2 · 3H, CMe2), 3.24 (dd, 1H, J = 2.8,
9.0 Hz), 3.42 (dd, 1H, J = 2.8, 9.5 Hz), 3.61 (d, 1H,
J = 9.5 Hz), 3.69 (d, 1H, J = 9.2 Hz), 4.47 (s, 1H, 3-H),
4.62 (d, 1H, J = 3.7 Hz, 2-H), 4.72 and 4.80 (2 · d, 2 · 1H,
J = 11.7 Hz, –O–CH2), 5.83 (d, 1H, J = 3.7 Hz, 1-H),
7.31–7.38 (m, 5H, Ph–H); 13C NMR (CDCl3, 75 MHz): d
25.6 (CH3), 26.4 (CH3), 34.3 (SCH2), 41.1 (SCH2), 72.3
(OCH2), 82.4 (CH), 83.9 (CH), 87.9 (C–O), 105.5 (O–CH–
O), 111.8 (O–C–O), 127.5 (2 · CH), 127.9 (CH), 128.4
(2 · CH), 137.1 (C); ESIMS: m/z 331 (M+Na)+. Com-
25
pound 13: yellowish gum, ½aꢂD ꢀ66.5 (c 0.71, CHCl3)
[found: C, 72.12; H, 7.01; N, 3.61. C23H27NO4 requires C,
72.42; H, 7.13; N, 3.67]; IR (neat): mmax 1494, 1454, 1376,
1310, 1212 cmꢀ1; 1H NMR (CDCl3, 300 MHz): d 1.28 and
1.40 (2 · s, 2 · 3H, CMe2), 3.24 (t-like, 2H, J = 8.7,
9.3 Hz), 3.71 (br s, 3H), 3.87 (d, 1H, J = 7.3 Hz), 4.31 (s,
1H, 3-H), 4.60 (d, 1H, J = 3.0 Hz, 2-H), 4.68 and 4.74
(2 · d, 2 · 1H, J = 11.8 Hz, –O–CH2), 5.84 (d, 1H,
J = 3.2 Hz, 1-H), 7.31–7.34 (m, 10H, Ph–H); 13C NMR
(CDCl3, 75 MHz): d 25.8 (CH3), 26.6 (CH3), 60.0 (NCH2),
63.3 (NCH2), 65.9 (NCH2), 72.1 (OCH2), 81.9 (C–O), 82.4
(CH), 84.8 (CH), 105.1 (O–CH–O), 111.8 (O–C–O), 127.0
(CH), 127.6 (2 · CH), 127.8 (CH), 128.28 (2 · CH), 128.35
(2 · CH), 128.43 (2 · CH), 137.5 (C), 137.8 (C); ESIMS:
m/z 382 (M+H)+, 404 (M+Na)+. Compound 15: gummy
6. Nielsen, P.; Larsen, K.; Wengel, J. Acta Chem. Scand.
1996, 50, 1030.
7. (a) Meldgaard, M.; Wengel, J. J. Chem. Soc., Perkin
Trans. 1 2000, 3539; (b) Herdewijn, P. Liebigs Ann. 1996,
1337.
25
material, ½aꢂD ꢀ104.2 (c 0.22, CHCl3) [found: C, 65.66; H,
6.78. C16H20O5 requires C, 65.74; H, 6.90]; IR (neat): mmax
1379, 1247, 1213, 1163, 1074, 1020, 972, 860, 752,
1
698 cmꢀ1; H NMR (CDCl3, 300 MHz): d 1.29 and 1.39
8. (a) Pratbiel, G.; Bernadou, J.; Meunier, B. Angew. Chem.,
Int. Ed. Engl. 1995, 34, 746; (b) Nicolaou, K. C.; Dai,
W.-M. Angew. Chem., Int. Ed. Engl. 1991, 30, 1387.
9. Liaw, Y. C.; Gao, Y. G.; Marquez, V. E.; Wang, A. H.
Nucleic Acids Res. 1992, 20, 459.
10. (a) Bar, N. C.; Patra, R.; Achari, B.; Mandal, S. B.
Tetrahedron 1997, 53, 4727; (b) Roy, A.; Chakrabarty,
K.; Dutta, P. K.; Bar, N. C.; Basu, N.; Achari, B.;
Mandal, S. B. J. Org. Chem. 1999, 64, 2304; (c) Singha,
K.; Roy, A.; Dutta, P. K.; Tripathi, S.; Sahabuddin, S.;
Achari, B.; Mandal, S. B. J. Org. Chem. 2004, 69, 6507.
11. Roy, A.; Roy, B. G.; Achari, B.; Mandal, S. B. Tetra-
hedron Lett. 2004, 45, 5811.
12. Procedures for the preparation of spirocycles 12, 13 and
15.To a solution of 11 (2.5 g, 5.36 mmol) in dry DMF
(15 mL) was added Na2S (0.63 g, 8.0 mmol) and the
mixture was heated at 110 ꢁC for 3 h. The solution was
cooled to rt and the solvent was evaporated under reduced
pressure. The residue was extracted with CHCl3
(3 · 30 mL), the combined extract was washed with water
(3 · 30 mL), dried (Na2SO4) and evaporated to a gummy
(2 · s, 2 · 3H, CMe2), 4.33 (s, 1H, 3-H), 4.60–4.64 (m,
3H), 4.73 (s, 1H), 4.76 (d, 1H, J = 3.7 Hz, 2-H), 4.83 (s,
2H, –OCH2Ph), 5.87 (d, 1H, J = 3.3 Hz, 1-H), 7.37 (m,
5H, Ph–H); 13C NMR (CDCl3, 75 MHz): d 25.7 (CH3),
26.7 (CH3), 72.2 (OCH2Ph), 77.2 (OCH2), 82.1 (CH), 82.5
(OCH2), 84.4 (CH), 85.4 (C–O), 105.4 (O–CH–O), 111.9
(O–C–O), 127.8 (2 · CH), 128.2 (CH), 128.6 (2 · CH),
137.0 (C); ESIMS: m/z 315 (M+Na)+.
13. Vorbruggen, H.; Krolikiewicz, K.; Bennua, B. Chem. Ber.
¨
1981, 114, 1234.
25
14. Compound 21: foamy solid, ½aꢂD ꢀ24.3 (c 0.46, CHCl3)
[found: C, 56.30; H, 4.89; N, 6.70. C19H20N2O6S requires
C, 56.42; H, 4.98; N, 6.93]; IR (KBr): mmax 3208 (br), 1749,
1688, 1456, 1377, 1223, 1107, 754 cmꢀ1; 1H NMR (CDCl3,
300 MHz): d 2.14 (s, 3H, OCOCH3), 2.98 (d, 1H,
J = 9.0 Hz), 3.53 (d, 1H, J = 9.0 Hz), 3.66 (t-like, 2H,
J = 10.0, 11.4 Hz), 4.33 (s, 1H, 30-H), 4.74 and 4.83 (2 · d,
2 · 1H, J = 11.5 Hz, OCH2), 5.20 (s, 1H, 20-H), 5.59 (d,
1H, J = 7.9 Hz, 5-H), 6.10 (s, 1H, 10-H), 7.33–7.39 (m, 6H,
Ph–H and 6-H), 8.78 (br s, 1H, NH); 13C NMR (CDCl3,
75 MHz): d 21.2 (CH3), 34.2 (SCH2), 39.9 (SCH2), 72.8