Beilstein J. Org. Chem. 2018, 14, 1972–1979.
8. Ohta, T.; Shudo, K.; Okamoto, T. Tetrahedron Lett. 1978, 19, 1983.
Conclusion
The cationic cobalt catalysts enabled the rearrangement reac-
tion of N-alkoxycarbonyloxyanilines to proceed under much
milder reaction conditions, expanding the substrate scope to
more electron-deficient anilines. More importantly, the cobalt
catalyst changes the mode of the rearrangement to an unprece-
dented [1,3]-manner.
9. Porzelle, A.; Woodrow, M. D.; Tomkinson, N. C. O. Eur. J. Org. Chem.
10.Porzelle, A.; Woodrow, M. D.; Tomkinson, N. C. O. Org. Lett. 2010, 12,
11.Tabolin, A. A.; Ioffe, S. L. Chem. Rev. 2014, 114, 5426.
12.Gutschke, D.; Heesing, A.; Heuschkel, U. Tetrahedron Lett. 1979, 20,
13.Nakamura, I.; Owada, M.; Jo, T.; Terada, M. Org. Lett. 2017, 19, 2194.
Experimental
To a mixture of 1k (138.9 mg, 0.4 mmol), CoCl2 (5.2 mg,
0.04 mmol), and AgSbF6 (27.5 mg, 0.08 mmol) under an argon
atmosphere in a pressure vial was added 1,2-dichloroethane
(1.6 mL). Then, the mixture was stirred at 30 °C for 2 hours.
After complete consumption of the starting material 1k, the
mixture was passed through a small pad of silica gel with ethyl
acetate. After removing the solvents in vacuo, the residue was
purified by flash silica gel column chromatography using
hexane/ethyl acetate (3:1) as eluent to obtain 2k (113.9 mg,
82%).
14.Nakamura, I.; Kudo, Y.; Terada, M. Angew. Chem., Int. Ed. 2013, 52,
15.Nakamura, I.; Jo, T.; Ishida, Y.; Tashiro, H.; Terada, M. Org. Lett. 2017,
16.The percentage of oxygen-18 content was determined by intensity of
the mass spectrum.
17.Rajendran, G.; Santini, R. E.; Van Etten, R. L. J. Am. Chem. Soc. 1987,
18.Oae, S.; Kitao, T.; Kitaoka, Y. Tetrahedron 1963, 19, 827.
19.Nasveschuk, C. G.; Rovis, T. Org. Biomol. Chem. 2008, 6, 240.
20.Hou, S.; Li, X.; Xu, J. J. Org. Chem. 2012, 77, 10856.
Supporting Information
21.Wada, N.; Kaneko, K.; Ukaji, Y.; Inomata, K. Chem. Lett. 2011, 40,
Supporting Information File 1
General procedure and analytic data for obtained products.
22.Xu, J. Curr. Org. Synth. 2017, 14, 511.
23.Hou, S.; Li, X.; Xu, J. Org. Biomol. Chem. 2014, 12, 4952.
24.Yang, Z.; Hou, S.; He, W.; Cheng, B.; Jiao, P.; Xu, J. Tetrahedron
Acknowledgements
This work was supported by JSPS KAKENHI Grant Number
JP16H00996 in Precisely Designed Catalysts with Customized
Scaffolding.
25.The reaction of a mixture of 1a and 1h in the presence of RuCl3 (10
mol %) and AgSbF6 (30 mol %) gave only the products 2a and 2h
derived from the starting materials; crossover products were not
detected (<3%) by HRMS. This result indicates that the rearrangement
to the para-position proceeds in an intramolecular manner.
ORCID® iDs
License and Terms
This is an Open Access article under the terms of the
Creative Commons Attribution License
References
1. Sum, P.-E.; Peterson, P. Bioorg. Med. Chem. Lett. 1999, 9, 1459.
that the reuse, redistribution and reproduction in particular
requires that the authors and source are credited.
2. Aikawa, Y.; Yamamoto, M.; Yamamoto, T.; Morimoto, K.; Tanaka, K.
3. Ahmad, R.; Kookana, R. S.; Alsoton, A. M.; Skjemstad, J. O.
4. Leffler, J. E.; Bradford Bond, W. J. Am. Chem. Soc. 1956, 78, 335.
The license is subject to the Beilstein Journal of Organic
Chemistry terms and conditions:
5. Denney, D. B.; Denney, D. Z. J. Am. Chem. Soc. 1960, 82, 1389.
The definitive version of this article is the electronic one
which can be found at:
6. Oae, S.; Sakurai, T.; Kimura, H.; Kozuka, S. Chem. Lett. 1974, 3, 671.
7. Oae, S.; Sakurai, T. Tetrahedron 1976, 32, 2289.
1979