In this Note we describe an alternative convergent synthesis
of 2 based on the palladium-catalyzed carbonylative Sonogashira
coupling4 of 2-iodo-5-methoxyaniline (4) with thiazolylacetylene
5 (Scheme 1). This approach may also provide a practical and
general access4 to polysubstituted quinolones related to structure
2.
Convergent Synthesis of the Quinolone
Substructure of BILN 2061 via Carbonylative
Sonogashira Coupling/Cyclization
Nizar Haddad,* Jonathan Tan, and Vittorio Farina
The synthesis of 4 from the commercially available 4-iodo-
3-nitroanisole is straightforward.5 Reduction of 4-iodo-3-ni-
troanisole with hydrazine hydrate leads to 4 in 79% isolated
yield 5a (Scheme 2). A 93% yield has recently been reported in
the reduction of 4-iodo-3-nitroanisole with hydrazine monohy-
drate in the presence of FeCl3.5b
The synthesis of thiazolylacetylene 5 was accomplished by
two different methods; the first one (Scheme 3) is based on the
preparation of iodothiazole 8 from 2-isopropylaminothiazoline-
4-one 6.6 Following Wiemer’s protocol7 for the synthesis of
vinyl iodides from ketones, thiazolyl phosphate 7 was prepared
from 6 in 83% yield, then it was converted without further
purification to the desired iodothiazole 8 upon treatment with
in situ generated TMSI. Sonogashira coupling8 with TMS-
acetylene provided the desired product 9 in quantitative yield.
Removal of the TMS protecting group9 was achieved in 98%
isolated yield upon treatment of 9 with K2CO3/MeOH, providing
the target substructure 5 ready for coupling with 4.
An alternative synthesis of 5 introduces the acetylene upon
coupling of lithiated TMS-acetylene to the previously reported10
N-methoxy-N-methylchloroacetamide 10 to provide 1111 in 93%
yield. Subsequently, 11 was converted, without further purifica-
tion, to thiazole 9 upon treatment with isopropyl thiourea in
54% isolated yield over two steps. Cleavage of the TMS
protecting group (K2CO3/MeOH) provided 5 in almost quantita-
tive yield (Scheme 4).
Palladium-catalyzed carbonylative Sonogashira/cyclization of
iodoanilines and iodophenols with terminal acetylenes has been
reported to provide selective formation of quinolones and
chromones, respectively, in high yields. On the basis of findings
by Torii and Kalinin,4 we expected that Et2NH (used as solvent)
should provide a good balance of basicity and steric hindrance
for carbonylative coupling/cyclization of iodoanisidine 4 with
thiazolylacetylene 5. We hoped to be able to minimize formation
of the corresponding amide 12 (Scheme 5) and promote
formation of a six- vs five-membered ring (sometimes observed
Department of Chemical DeVelopment, Boehringer Ingelheim
Pharmaceuticals Inc., 900 Ridgebury Rd., P.O. Box 368,
Ridgefield, Connecticut 06877-0368
ReceiVed March 13, 2006
A convergent synthesis of quinolone 2 (key substructure of
the protease inhibitor BILN 2061) was developed via
palladium-catalyzed carbonylation of 2-iodo-5-methoxy-
aniline (4) with thiazolylacetylene 5.
BILN 2061 has recently been reported as the first Hepatitis
C virus (HCV) NS3 protease inhibitor that shows antiviral
effects in infected humans.1 A discovery synthesis of the drug
was recently reported.2 The thiazole moiety of the quinoline
substructure was constructed through several transformations
including an Arndt-Eistert reaction, which employs the unsafe
reagent diazomethane (Scheme 1). As part of our studies on a
scalable synthesis of BILN 2061, we became interested in
devising a convergent approach to the quinolone subunit 2. A
preliminary scalable synthesis of 2 has recently been developed
in our group, and it is based on the cyclization of aryl amide 3
(Scheme 1).3
(1) (a) Reiser, M.; Hinrichsen, H.; Benhamou, Y.; Sentjens, R.; Wede-
meyer, H.; Calleja, L.; Forns, X.; Croenlein, J.; Yong, C.; Nehmiz, G.;
Steinmann, G. Hepatology 2003, 38 (Suppl. 1), 221A. (b) Lamarre, D.;
Anderson, P. C.; Bailey, M.; Beaulieu, P.; Bolger, G.; Bonneau, P.; Boes,
M.; Cameron, D. R.; Cartier, M.; Cordingley, M. G.; Faucher, A.-M.;
Goudreau, N.; Kawai, S. H.; Kukolj, G.; Lagace, L.; LaPlante, S. R.; Narjes,
H.; Poupart, M.-A.; Rancourt, J.; Sentjens, R. E.; St. George, R.; Simoneau,
B.; Steinmann, G.; Thibeault, D.; Tsantrizos, Y. S.; Weldon, S. M.; Yong,
C.-L.; Llina´s-Brunet, M. Nature 2003, 426, 186. (c) Benhamou, Y.;
Hinrichsen, H.; Sentjens, R.; Reiser, M.; Manns, M. P.; Forns, X.; Avendano,
C.; Croenlein, J.; Nehmiz, G.; Steinmann, G. Hepatology 2002, 36, 304A,
Abstract 563. (d) Hinrichsen, H.; Benhamou, Y.; Reiser, M.; Sentjens, R.;
Wedemeyer, H.; Calleja, J. L.; Forns, X.; Croenlein, J.; Nehmiz, G.;
Steinmann, G. Hepatology 2002, 36, 297A, Abstract 866.
(2) (a) Faucher, A.-M.; Bailey, M. D.; Beaulieu, P. L.; Brochu, C.;
Duceppe, J.-S.; Ferland, J.-M.; Ghiro, E.; Gorys, V.; Halmos, T.; Kawai,
S. H.; Poirier, M.; Simoneau, B.; Tsantrizos, Y. S.; Llina´s-Brunet, M. Org.
Lett. 2004, 6, 2901-2904. (b) Yee, N. K.; Farina, V.; Houpis, I. N.; Haddad,
N.; Frutos, R. P.; Gallou, F.; Wang, X.-J.; Wei. X.; Simpson, R. D.; Feng,
X.; Fuchs, V.; Xu, Y.; Tan, J.; Zhang, L.; Xu, J.; Smith-Keenan, L. L.;
Vitous, J.; Ridges, M. D.; Spinelli, E. M.; Johnson, M. J. Org. Chem.
Submitted for publication.
(4) (a) Torii, S.; Okumoto, H.; Xu, L.; Sadakane, M.; Shostakovsky, M.
V.; Ponomaryov, A. B.; Kalinin, V. N. Tetrahedron 1993, 49, 6773 and
references therein. (b) Kalinin, V. N.; Shostakovsky, M. V.; Ponomaryov,
A. B. Tetrahedron Lett. 1992, 33, 373.
(5) (a) Han, B. H.; Shin, D, H.; Cho, S. Y. Tetrahedron Lett. 1985, 26,
6233. (b) Ma, C.; Liu, X.; Li, X.; Flippen-Anderson, J.; Yu, S.; Cook, J.
M. J. Org. Chem. 2001, 66, 4525. (c) Jia, Y.; Zhu, J. Synlett 2005, 2469.
(d) For reduction of similar structures under hydrazine-free conditions see:
Andersen, A.; Wang, S.; Thompson, R. D.; Neumeyer, J. L. J. Heterocycl.
Chem. 1997, 34, 1633.
(6) Akerblom, E. Acta Chem. Scand. 1967, 21, 843.
(7) Lee, K.; Wiemer, D. F. Tetrahedron Lett. 1993, 34, 2433.
(8) (a) Sonogashira, K.; Tohda, Y.; Hagiwara, N. Tetrahedron Lett. 1975,
16, 4467. (b) Shin, K.; Ogasawara, K. Synlett 1995, 859.
(9) (a) Reference 8b. (b) Wender, P. A.; McKinney, J. A.; Mukai, C. J.
Am. Chem. Soc. 1990, 112, 5369. (c) Suffert, J. Tetrahedron Lett. 1990,
31, 7437.
(3) For scalable synthesis of quinolone 2 from 3 see: Frutos, R. P.;
Haddad, N.; Houpis, I.; Johnson, M.; Smith-Keenan, L. L.; Fuchs, V.; Yee,
N. K.; Farina, V.; Faucher, A.-M.; Brochu, C.; Hache´, B.; Duceppe, J.-S.;
Beaulieu, P. Synthesis. In press.
(10) Tillyer, R.; Frey, L. F.; Tschaen, D. M.; Dolling, U. H. Synlett 1996,
225.
(11) For an alternative synthesis of compound 11 see: Livingston, R.;
Cox, L. R.; Odermatt, S.; Diederich, F. HelV. Chim. Acta 2002, 85, 3052.
10.1021/jo060556q CCC: $33.50 © 2006 American Chemical Society
Published on Web 05/20/2006
J. Org. Chem. 2006, 71, 5031-5034
5031