82
J. Auge´ et al. / Journal of Organometallic Chemistry 679 (2003) 79ꢁ
/
83
1
Advance DPX 250 spectrometer (250 MHz for H and
62.5 MHz for 13C); chemical shifts were expressed in
parts per million downfield from tetramethylsilane.
13C-NMR (CDCl3, 62.5 MHz): d 14 (C-6), 18.2 (C-5),
18.6 (C-4), 19.8 (Me-acetal, syn), 24.3 and 24.6 (2Me-
acetal, anti), 25.6-38 (c-Hex), 42.6, 42.7, 43.6, 98.1 (C-
acetal, syn), 100.1 (C-acetal, anti).
4.2. General procedure for indium-catalyzed allylation of
aldehydes and ketones
4.3. Homocoupling of benzaldehyde
As a typical experiment, indium (23 mg, 0.2 mmol)
and manganese (550 mg, 10 mmol) were placed in a
Schlenk tube. The mixture was stirred under vacuum for
30 min. THF (12.5 ml) was then added under argon and
the mixture stirred vigorously; allyl bromide (432 ml, 5
mmol), benzaldehyde (203 ml, 2 mmol), TMSCl (1.27 ml,
10 mmol) were successively added under argon. The
mixture was allowed to react at room temperature for 3
h under a vigorous stirring; it turned progressively from
black to gray and then white. After 3 h, a saturated
solution of ammonium chloride (12 ml) was added and
the adduct extracted with ethyl acetate. The organic
layers were dried, filtered off and then evaporated to
afford after silicagel chromatography 1-phenyl-but-3-
en-1-ol in 88% yield.
Indium (804 mg, 7 mmol) was placed in a Schlenk
tube. The mixture was stirred under vacuum for 30 min.
THF (60 ml), benzaldehyde (1.06 g, 10 mmol) and
TMSCl (2.17 g, 20 mmol) were successively added. The
mixture was allowed to react at room temperature for 4
h under a vigorous stirring. After adding 20 ml of ethyl
acetate and 50 ml of water, the mixture was extracted
three times with 20 ml of ethyl acetate. The organic
layers were washed with 50 ml of a saturated solution of
sodium bicarbonate and dried over magnesium sul-
phate. After evaporation of the solvents, the residue
was chromatographed (cyclohexaneꢁethyl acetate, 95:5,
/
v/v) to give diphenylacetaldehyde 5 (461 mg, 47%),
desoxybenzoin 6 (118 mg, 12%) and benzophenone (182
mg, 20%).
4.2.1. 1-benzyloxy-1-cyclohexylpent-4-en-2-ol (3)
1H-NMR (CDCl3, 250 MHz): d 1ꢁ
/
1.9 (m, 11H, c-
References
Hex), 2ꢁ
/
2.4 (m, 3H, OH and H-3), 2.95 (dd, 0.33H, J
5.7, J1,2 3.6, H-1, syn), 3.06 (t, 0.67H, J1,2 5.2, H-1, anti),
3.6 (m, 0.33H, H-2, syn), 3.66 (ddd, 0.67H, J2,3 8.7, J1,2
5.2, J2,3? 3.9, H-2, anti), 4.31 (d, 0.33H, J 11.8, PhCH2,
[1] For recent reviews see: (a) C.-J. Li, T.-H. Chan, Tetrahedron 55
(1999) 11149. (b) B.C. Ranu, Eur. J. Org. (2000) 2347. (c) J.
Podlech, T.C. Maier, Synthesis (2003) 633.
syn), 4.47 (d, 0.67H, J 11.4, PhCH2, anti), 4.54ꢁ
(2d, 1H, PhCH2, syn and anti), 4.91ꢁ5.06 (m, 2H, H-5
and H-5?), 5.63ꢁ5.83 (m, 1H, H-4), 7.1ꢁ7.3 (m, 5H).
13C-NMR (CDCl3, 62.5 MHz): dꢂ
25.7, 25.8, 25.9,
/
4.55
[2] (a) S. Araki, H. Ito, Y. Butsugan, J. Org. Chem. 53 (1988) 1831;
(b) S. Araki, T. Kamei, T. Hirashita, H. Yamamura, M. Kawai,
Org. Lett. 2 (2000) 847;
/
/
/
(c) K.-T. Tan, S.-S. Chng, H.-S. Cheng, T.-P. Loh, J. Am. Chem.
Soc. 125 (2003) 2958.
/
26.0, 26.1, 26.3, 28.4, 28.5, 29.8 (syn), 30.1 (anti), 36.8
(anti), 39.3 (syn), 39.7 (anti), 39.9 (syn), 70.5 (C-2, syn),
70.7 (C-2, anti), 74.6 (PhCH2), 85.4 (C-1, syn), 86.5 (C-
1, anti), 116.9 (C-5, syn), 117. 5 (C-5, anti), 127.3, 127.4,
127.5, 127.7, 128.1, 128.2 (PhCH), 135.0 (C-4, syn),
135.3 (C-4, anti), 138.3 (PhC, syn), 138.7 (PhC, anti).
[3] M.B. Isaac, T.-H. Chan, J. Chem. Soc. Chem. Commun. (1995)
1003.
[4] J. Auge´, N. Lubin-Germain, L. Seghrouchni, Tetrahedron Lett.
43 (2002) 5255.
[5] T. Hirashita, K. Kinoshita, H. Yamamura, M. Kawai, S. Araki, J.
Chem. Soc. Perkin Trans. 1 (2000) 825.
[6] S. Araki, Y. Butsugan, J. Chem. Soc. Chem. Commun. (1989)
1286.
4.2.2. 1-benzyloxy-1-cyclohexylhex-5-en-3-ol (4)
1H-NMR (CDCl3, 250 MHz): d 1ꢁ
2.2 (m, 15H, c-
[7] B.C. Ranu, J. Dutta, S.K. Guchhait, Org. Lett. 3 (2001) 2603.
[8] J. Auge´, N. Lubin-Germain, L. Seghrouchni, Tetrahedron Lett.
44 (2003) 819.
/
Hex, H-2 and H-4), 3.4 (m, 0.68H, H-1, anti), 3.6 (m,
0.32H, H-1, syn), 3.7 (m, 0.68H, H-3, anti), 3.9 (m,
0.32H, H-3, syn), 4.4 (m, 2H, PhCH2), 5.0 (m, 2H, H-6
and H-6?), 5.7 (m, 1H, H-5).
[9] S. Araki, S.-J. Jin, Y. Idou, Y. Butsugan, Bull. Chem. Soc. Jpn 65
(1992) 1736.
[10] J. Auge´, N. Lubin-Germain, A. Thiaw-Woaye, Tetrahedron Lett.
40 (1999) 9245.
13C-NMR (CDCl3, 62.5 MHz): d 25.9, 26.5, 28.5,
28.9, 29.5, 32.7, 32.9, 38.6, 40.4, 71.2 (PhCH2, syn), 72.1
(PhCH2, anti), 79.7, 116.5 (C-6, syn), 117.2 (C-6, anti),
127.3, 127.7, 128.2 (PhCH), 134.9 (C-5), 138.8 (PhC).
Anal. Calc. for C19H28O2: C, 79.12; H, 9.78; O, 11.09.
Found: C, 78.23; H, 9.87; O, 10.81%.
[11] (a) G. Cahiez, P.-Y. Chavant, Tetrahedron Lett. 30 (1989) 7373;
(b) G. Cahiez, A. Martin, T. Delacroix, Tetrahedron Lett. 40
(1999) 6407.
[12] K. Takai, T. Ueda, T. Hayashi, T. Moriwake, Tetrahedron Lett.
37 (1996) 7049.
[13] Mischmetall as small ingots was purchased from Fluka. The alloy
contains light lanthanides, particularly cerium (more than 50%).
The redox potential of the Ce3ꢀ/Ce couple is low (ꢃ
2.336 V).
Mischmetall was recently used as a coreductant for catalytic
/
4.2.3. 1-cyclohexyl-1,3-O-isopropylidenehexane (5)
1H-NMR (CDCl3, 250 MHz): d 0.7ꢁ
3.8 (m, 3H, H-1 and H-3).
reactions of samarium diiodide [14].
[14] F. He´lion, J.-L. Namy, J. Org. Chem. 64 (1999) 2944.
[15] G. Hilt, K.I. Smolko, Angew. Chem. Int. Ed. 40 (2001) 3399.
/
2 (m, 26H), 3.2ꢁ
/