Organic Letters
Letter
(5) (a) Chen, X.; Yang, F.; Cui, X.; Wu, Y. Adv. Synth. Catal. 2017,
359, 3922−3926. (b) Inamoto, K.; Araki, Y.; Kikkawa, S.; Yonemoto,
M.; Tanaka, Y.; Kondo, Y. Org. Biomol. Chem. 2013, 11, 4438−4441.
(c) Araki, Y.; Kobayashi, K.; Yonemoto, M.; Kondo, Y. Org. Biomol.
Chem. 2011, 9, 78−80.
(6) Kanyiva, K. S.; Nakao, Y.; Hiyama, T. Angew. Chem., Int. Ed.
2007, 46, 8872−8874.
(7) Shibata, T.; Matsuo, Y. Adv. Synth. Catal. 2014, 356, 1516−
1520.
́
(8) Chen, X.; Ruider, S. A.; Hartmann, R. W.; Gonzalez, L.; Maulide,
N. Angew. Chem., Int. Ed. 2016, 55, 15424−15428.
(9) (a) Barsu, N.; Sen, M.; Premkumar, J. R.; Sundararaju, B. Chem.
Commun. 2016, 52, 1338−1341. (b) Zhang, X.; Qi, Z.; Li, X. Angew.
Chem., Int. Ed. 2014, 53, 10794−10798. (c) Sharma, U.; Park, Y.;
Chang, S. J. Org. Chem. 2014, 79, 9899−9906.
(10) Sharma, S.; Kumar, M.; Vishwakarma, R. A.; Verma, M. K.;
Singh, P. P. J. Org. Chem. 2018, 83, 12420−12431.
(11) For selected reviews, see: (a) Marzo, L.; Pagire, S. K.; Reiser,
̈
O.; Konig, B. Angew. Chem., Int. Ed. 2018, 57, 10034−10072.
(b) Silvi, M.; Melchiorre, P. Nature 2018, 554, 41−49. (c) Romero,
N. A.; Nicewicz, D. A. Chem. Rev. 2016, 116, 10075−10166.
(d) Ravelli, D.; Protti, S.; Fagnoni, M. Chem. Rev. 2016, 116, 9850−
9913. (e) Skubi, K. L.; Blum, T. R.; Yoon, T. P. Chem. Rev. 2016, 116,
10035−10074. (f) Prier, C. K.; Rankic, D. A.; MacMillan, D. W. C.
Chem. Rev. 2013, 113, 5322−5363. (g) Xuan, J.; Xiao, W.-J. Angew.
Chem., Int. Ed. 2012, 51, 6828−6838. (h) Narayanam, J. M. R.;
Stephenson, C. R. J. Chem. Soc. Rev. 2011, 40, 102−113.
(12) (a) Zhou, W.; Miura, T.; Murakami, M. Angew. Chem., Int. Ed.
2018, 57, 5139−5142. (b) Zhang, W.-M.; Dai, J.-J.; Xu, J.; Xu, H.-J. J.
Org. Chem. 2017, 82, 2059−2066.
(13) (a) Xue, F.; Deng, H.; Xue, C.; Mohamed, D. K. B.; Tang, K.
Y.; Wu, J. Chem. Sci. 2017, 8, 3623−3627. (b) Zhou, R.; Liu, H.; Tao,
H.; Yu, X.; Wu, J. Chem. Sci. 2017, 8, 4654−4659. (c) Deng, H.; Fan,
X.; Chen, Z.; Xu, Q.; Wu, J. J. Am. Chem. Soc. 2017, 139, 13579−
13584. (d) Fan, X.; Rong, J.; Wu, H.; Zhou, Q.; Deng, H.; Tan, J. D.;
Xue, C.; Wu, L.; Tao, H.; Wu, J. Angew. Chem., Int. Ed. 2018, 57,
8514−8518. (e) Hou, J.; Ee, A.; Feng, W.; Xu, J.-H.; Zhao, Y.; Wu, J.
J. Am. Chem. Soc. 2018, 140, 5257−5263. (f) Deng, H.-P.; Zhou, Q.;
Wu, J. Angew. Chem., Int. Ed. 2018, 57, 12661−12665. (g) Li, J.; Luo,
Y.; Cheo, H. W.; Lan, Y.; Wu, J. Chem. 2019, 5, 192−203.
(14) For structural confirmation of products 4h−4j, see the
(15) (a) Sultan, S.; Rizvi, M. A.; Kumar, J.; Shah, B. A. Chem. - Eur. J.
2018, 24, 10617−10620. (b) Kianmehr, E.; Gholamhosseyni, M. Eur.
J. Org. Chem. 2018, 2018, 1559−1566. (c) Li, J.-L.; Li, W.-Z.; Wang,
Y.-C.; Ren, Q.; Wang, H.-S.; Pan, Y.-M. Chem. Commun. 2016, 52,
10028−10031. (d) Chen, X.; Cui, X.; Wu, Y. Org. Lett. 2016, 18,
3722−3725.
(16) Under aerobic conditions, the generation of unacylated
pyridine byproducts was detected, which could account for the
relatively moderate yield of desired products.
(17) During the preparation of this manuscript, a related study of
ortho-alkylation of pyridine N-oxides with alkynes by photocatalysis
was reported; see: Markham, J. P.; Wang, B.; Stevens, E. D.; Burris, S.
C.; Deng, Y. Chem. - Eur. J. 2019, 25, 6638−6644. However, we
suggested an alternative mechanistic pathway. For detailed analysis,
(18) The alkylation required a longer reaction time compared to
acylation probably due to the presence of a dark color during the
reaction process which limited the photon absorption. The reaction
under O2 was almost colorless.
(19) For singlet oxygen generation under photocatalytic conditions
−
with Mes-Acr+ClO4 , see: Griesbeck, A. G.; Cho, M. Org. Lett. 2007,
9, 611−613.
(20) (a) Tsang, A. S.-K.; Kapat, A.; Schoenebeck, F. J. Am. Chem.
Soc. 2016, 138, 518−526. (b) Li, J.; Cai, S.; Chen, J.; Zhao, Y.; Wang,
D. Z. Synlett 2014, 25, 1626−1628.
E
Org. Lett. XXXX, XXX, XXX−XXX