Organic Letters
Letter
X. Y.; He, W. W.; Yuan, Y.; Chen, S.; Liu, X. Y. Catalytic asymmetric
radical aminoperfluoroalkylation and aminodifluoromethylation of
alkenes to versatile enantioenriched-fluoroalkyl amines. Nat. Commun.
2017, 8, 14841. (b) Zhang, B.; Muck-Lichtenfeld, C.; Daniliuc, C. G.;
Studer, A. 6-Trifluoromethyl-phenanthridines through radical tri-
fluoromethylation of isonitriles. Angew. Chem., Int. Ed. 2013, 52,
10792−10795. (c) Zhang, W.; Wang, F.; McCann, S. D.; Wang, D.;
Chen, P.; Stahl, S. S.; Liu, G. Enantioselective cyanation of benzylic
C-H bonds via copper-catalyzed radical relay. Science 2016, 353,
1014−1018.
(4) Kita, Y.; Matsugi, M. Radical Initiators. In Radicals in Organic
Synthesis; Renaud, P., Sibi, M. P., Eds.; Wiley-VCH, 2001; pp 1−10.
(5) (a) Huang, Z.; Jin, L.; Feng, Y.; Peng, P.; Yi, H.; Lei, A. Iron-
catalyzed oxidative radical cross-coupling/cyclization between phe-
nols and olefins. Angew. Chem., Int. Ed. 2013, 52, 7151−7155. (b) Li,
Z.; Cui, Z.; Liu, Z. Q. Copper- and iron-catalyzed decarboxylative tri-
and difluoromethylation of alpha,beta-unsaturated carboxylic acids
with CF3SO2Na and (CF2HSO2)2Zn via a radical process. Org. Lett.
2013, 15, 406−409. (c) Lou, J.; Wang, Q.; Wu, K.; Wu, P.; Yu, Z.
Iron-Catalyzed Oxidative C-H Functionalization of Internal Olefins
for the Synthesis of Tetrasubstituted Furans. Org. Lett. 2017, 19,
3287−3290. (d) Lv, L.; Qi, L.; Guo, Q.; Shen, B.; Li, Z. Iron-
Catalyzed Divergent Tandem Radical Annulation of Aldehydes with
Olefins toward Indolines and Dihydropyrans. J. Org. Chem. 2015, 80,
12562−12571.
Fe(III) species. The tert-butoxyl radical (A) then decomposed
to a methyl radical (B, trapped by TEMPO) and a molecular
of acetone. A radical relay process then occurs between the
methyl radical and alkyl iodide affording a new carbon radical
(C, trapped by TEMPO when C is a sec-butyl group) and
methyl iodide. This carbon radical adds to the terminal alkyne,
generating an internal vinyl radical (D). According to our
previous work,15 the radical D can deliver the final product and
regenerate Fe(II) species.
In conclusion, we have developed an efficient iron-catalyzed
oxyalkylation of terminal alkynes with alkyl iodides enabled by
a radical relay process. Primary and secondary alkyl iodides
could be utilized as alkyl sources to afford a range of α-
alkylated ketones under mild reaction conditions.
ASSOCIATED CONTENT
* Supporting Information
■
S
The Supporting Information is available free of charge on the
Typical experimental procedure and characterization of
(6) For selected examples initiated by AIBN: (a) Barton, D. H. R.;
McCombie, S. W. A new method for the deoxygenation of secondary
alcohols. J. Chem. Soc., Perkin Trans. 1 1975, 1, 1574. (b) Liu, D.; Liu,
C.; Lei, A. Carbon-Centered Radical Addition to C = X Bonds for C-
X Bond Formation. Chem. - Asian J. 2015, 10, 2040−2054.
(c) Nishiyama, Y.; Kajimoto, H.; Kotani, K.; Sonoda, N. Hydro-
silylation of Carbonyl Compounds Using a PhSeSiMe3/Bu3SnH/
AIBN System. Org. Lett. 2001, 3, 3087−3089. (d) Ono, N.;
Hamamoto, I.; Kaji, A. Regioselective allylation of ketones under
neutral conditions. J. Org. Chem. 1986, 51, 2832−2833. (e) Renaud,
P. Addition of sulfinylated and sulfonylated carbon centered radicals
to alkenes and enolethers. Tetrahedron Lett. 1990, 31, 4601−4604.
(f) Zhu, H.; Wickenden, J. G.; Campbell, N. E.; Leung, J. C.; Johnson,
K. M.; Sammis, G. M. Construction of carbo- and heterocycles using
radical relay cyclizations initiated by alkoxy radicals. Org. Lett. 2009,
11, 2019−2022.
(7) For selected examples initiated by Et3B: (a) Brucelle, F.; Renaud,
P. Synthesis of a leucomitosane via a diastereoselective radical
cascade. J. Org. Chem. 2013, 78, 6245−6252. (b) Kamimura, D.;
Nagatomo, M.; Urabe, D.; Inoue, M. Expanding the scope of Et3B/
O2-mediated coupling reactions of O,Te-acetal. Tetrahedron 2016, 72,
7839−7848. (c) Kamimura, D.; Urabe, D.; Nagatomo, M.; Inoue, M.
Et3B-mediated radical-polar crossover reaction for single-step
coupling of O,Te-acetal, alpha,beta-unsaturated ketones, and
aldehydes/ketones. Org. Lett. 2013, 15, 5122−5125. (d) Lambert,
T. H.; Danishefsky, S. J. Total synthesis of UCS1025A. J. Am. Chem.
Soc. 2006, 128, 426−427. (e) Petit, M.; Lapierre, A. J.; Curran, D. P.
Relaying asymmetry of transient atropisomers of o-iodoanilides by
radical cyclizations. J. Am. Chem. Soc. 2005, 127, 14994−14995.
(f) Reddy, L. R.; Fournier, J. F.; Subba Reddy, B. V.; Corey, E. J. An
efficient, stereocontrolled synthesis of a potent omuralide-salinosporin
hybrid for selective proteasome inhibition. J. Am. Chem. Soc. 2005,
127, 8974−8976.
AUTHOR INFORMATION
Corresponding Authors
■
ORCID
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
We thank the Innovative Research Teams Program II of Fujian
Normal University in China (IRTL1703), the Natural Science
Foundation of Fujian Province, China (2016J0101), the
National Key R&D Program of China (2017YFA0700103),
the NSFC (Grant Nos. 21502191, 21672213, and 21871258),
the Strategic Priority Research Program of the Chinese
Academy of Sciences (Grant No. XDB20000000), and the
Haixi Institute of CAS (Grant No. CXZX-2017-P01) for
financial support.
REFERENCES
■
(1) For selected books and reviews on radical chemistry: (a) Togo,
H. Advanced Free Radical Reactions for Organic Synthesis; Elsevier:
Amsterdam, 2004. (b) Zard, S. Z. Radical reactions in organic synthesis;
Oxford University Press: Oxford, U.K., 2003. (c) Prier, C. K.; Rankic,
D. A.; MacMillan, D. W. Visible light photoredox catalysis with
transition metal complexes: applications in organic synthesis. Chem.
Rev. 2013, 113, 5322−5363. (d) Studer, A.; Curran, D. P. The
electron is a catalyst. Nat. Chem. 2014, 6, 765−773.
(8) (a) Studer, A.; Amrein, S. Silylated Cyclohexadienes: New
Alternatives to Tributyltin Hydride in Free Radical Chemistry. Angew.
Chem., Int. Ed. 2000, 39, 3080−3082. (b) Studer, A.; Amrein, S.;
Schleth, F.; Schulte, T.; Walton, J. C. Silylated cyclohexadienes as new
radical chain reducing reagents: preparative and mechanistic aspects.
J. Am. Chem. Soc. 2003, 125, 5726−5733.
(9) (a) Povie, G.; Ford, L.; Pozzi, D.; Soulard, V.; Villa, G.; Renaud,
P. Catechols as Sources of Hydrogen Atoms in Radical Deiodination
and Related Reactions. Angew. Chem., Int. Ed. 2016, 55, 11221−
11225. (b) Povie, G.; Tran, A.-T.; Bonnaffe, D.; Habegger, J.; Hu, Z.;
(2) For selected reviews on radical relay: (a) Quiclet-Sire, B.; Zard,
S. Z. Some aspects of radical cascade and relay reactions. Proc. R. Soc.
London, Ser. A 2017, 473, 20160859. (b) Robertson, J.; Pillai, J.; Lush,
R. K. Radical translocation reactions in synthesis. Chem. Soc. Rev.
2001, 30, 94−103. (c) Xuan, J.; Studer, A. Radical cascade cyclization
of 1,n-enynes and diynes for the synthesis of carbocycles and
heterocycles. Chem. Soc. Rev. 2017, 46, 4329−4346.
(3) For selected, recent published, excellent examples of bond
formation enabled by radical relay: (a) Lin, J. S.; Wang, F. L.; Dong,
D
Org. Lett. XXXX, XXX, XXX−XXX