SCHEME 1. 1,3-Addition of Vinylmagnesium Bromidea
FIGURE 1. Castanospermine and analogues.
groups at each carbon atom in the indolizidine ring skeleton,
have been synthesized12c,15 and evaluated for the glycosidase
inhibition in the treatment of various diseases such as diabetes,16
cancer,17 and multiple scelerosis,18 as well as viral infections
including AIDS, hepatitis C, and HSV-1.19 As a result of the
highly oxygenated framework in 1a-c, the chiron approach is
the obvious choice for their synthesis.20 In fact, the D-glucose
type of hidden symmetry in 1 could be easily recognized in the
trihydroxylated architect of the piperidine ring, wherein the C-6,
7, and 8 of 1 match with that of the C-2, 3, and 4 of D-glucose
as far as the position and stereochemical aspects are concerned.
However, the building of a pyrrolidine ring, with stereochemi-
cally well-defined hydroxylated carbon center C-1 of 1, requires
an asymmetric pathway. In general, the required carbinol center
is generated first, followed by an intramolecular cyclization, to
get the pyrrolidine ring skeleton. The use of the intramolecular
aminomercuration strategy with D-glucose derived â-hydroxy-
γ-alkenylamines for the formation of pyrrolidine ring and further
elaboration to castanospermine 1a, to the best of our knowledge,
is not known. Our efforts toward the successful implementation
of this methodology for the synthesis of castanospermine 1a,
a Reaction conditions: (a) vinylmagnesium bromide, TMSOTf, THF,
-78 °C, 2 h, 90%; (b) Zn, Cu(OAc)2, AcOH, 80 °C, 1 h; (c) NaHCO3,
CbzCl, MeOH-water (4:1), 3 h; (d) (i) NMO, K2OsO4‚2H2O, acetone-
water (8:1), 12 h; (ii) NaIO4, acetone-water (9:1), 6 h.
1-epi-castanospermine 1b, and 8a-epi-castanospermine 1c are
reported herein.
A 1,3-addition reaction of vinylmagnesium bromide (3.0 eq.)
to nitrone 2 in THF at 0 °C afforded a diastereomeric mixture
of D-gluco- and L-ido-N-allylamines 3a and 3b, respectively,
in the ratio of 55:45 (Scheme 1). The diastereoselectivity in
favor of D-gluco isomer was achieved using TMSOTf (1 equiv)
at -78 °C in dry THF, which gave 3a/3b in the ratio 87/13.21
The spectral and analytical data is found to be identical with
that reported.22 The N-O bond reductive cleavage in 3a using
zinc in acetic acid-water afforded N-benzylamino sugar 4a,22a
which on treatment with benzylchloroformate afforded N-Cbz
protected allylamine 5a.23 Dihydroxylation of 5a (potassium
osmate, NMO), followed by a reaction with NaIO4, afforded
R-amino aldehyde 6a. The similar reaction sequence with
hydroxylamine 3b afforded corresponding 4b, 5b, and R-amino
aldehyde 6b in good yields.24 No epimerization at C-5 in 6a,b
was noticed under NaIO4-mediated oxidative cleavage of the
diol.
(13) (a) Hohenschutz, L. D.; Bell, E. A.; Jewess, P. J.; Leworthy, D. P.;
Pryce, R. J.; Arnold, E.; Clardy, J. Phytochemistry 1981, 20, 811-814. (b)
Nash, R. J.; Fellows, L. E.; Dring, J. V.; Stirotn, C. H.; Carter, D.; Hegarty,
M. P.; Bell, E. A. Phytochemistry 1988, 27, 1403-1406.
(14) (a) Elbein, A. D.; Molyneux, R. J. In Alkaloids: Chemical and
Biological PerspectiVes; Pelletier, S. W., Ed.; Wiley-Interscience: New
York, 1987; Vol. 5. Howard, A. S.; Michael, J. P. In The Alkaloids; Brossi,
A., Ed.; Academic Press: New York, 1986; Vol. 28, Chapter 3. (b) Michael,
J. P. Nat. Prod. Rep. 1990, 9, 485-523.
(15) (a) Svansson, L.; Johnston, B. D.; Gu, J.-H.; Patrik, B.; Pinto, B.
M. J. Am. Chem. Soc. 2000, 122, 10769-10775. (b) Izquiedro, I.; Plaza,
M. T.; Robles, R.; Mota, A. J. Tetrahedron: Asymmetry 1998, 9, 1015-
1027. (c) Kefalas, P.; Grierson, D. S. Tetrahedron Lett. 1993, 34, 3555-
3558. (d) Burgess, K.; Chaplin, D. A.; Henderson, I.; Pan, Y. T.; Elbein,
A. D. J. Org. Chem. 1992, 57, 1103-1109. (e) Furneaux, R. H.; Mason, J.
M.; Tyler, P. C. Tetrahedron Lett. 1995, 36, 3055-3058.
In the next step (Scheme 2), the reaction of vinylmagnesium
bromide with D-gluco-configurated-R-amino aldehyde 6a at -50
°C afforded a diastereomeric mixture of anti/syn products in
1
the ratio 3:1, as is evident from the H NMR spectrum of the
crude product.25 Our attempts to alter the diastereoselectivity
as well as to separate the diastereomers by flash chromatography
were unsuccessful,26 therefore, the mixture was directly treated
with 40% KOH in MeOH for 10 min at 90 °C, which afforded
easily separable carbamates 7a and 7b in the ratio of 3:1. The
(16) Nojima, H.; Kimura, I.; Chen, F.-J.; Sugihara, Y.; Haruno, M.; Kato,
A.; Asano, N. J. Nat. Prod. 1998, 61, 397-400.
(17) Pili, R.; Chang, J.; Partis, R. A.; Mueller, R. A.; Chrest, F. J.;
Passaniti, A. Cancer Res. 1995, 55, 2920-2926.
(18) Walter, S.; Fassbender, K.; Gulbins, E.; Liu, Y.; Rieschel, M.;
Herten, M.; Bertsch, T.; Engelhardt, B. J. Neuroimmunol. 2002, 132, 1-10.
(19) (a) Karpas, A.; Fleet, G. W. J.; Dwek, R. A.; Petursson, S.;
Namgoong, S. K.; Ramsden, N. G.; Jacob, G. S.; Rademacher, T. W. Proc.
Natl. Acad. Sci. U.S.A. 1988, 85, 9229-9233. (b) Walker, B. D.; Kowalski,
M.; Goh, W. C.; Kozarsky, K.; Krieger, M.; Rosen, C.; Rohrschneider, L.;
Haseltine, W. A.; Sodroski, J. Proc. Natl. Acad. Sci. U.S.A. 1987, 84, 8120-
8124. (c) Sunkara, P. S.; Bowling, T. L.; Liu, P. S.; Sjoerdsma, A. Biochem.
Biophys. Res. Commun. 1987, 148, 206-210. (d) Whitby, K.; Taylor, D.;
Patel, D.; Ahmed, P.; Tyms, A. S. AntiViral Chem. Chemother. 2004, 15,
141-151. (e) Bridges, C. G.; Ahmed, S. P.; Kang, M. S.; Nash, R. J.; Porter,
E. A.; Tyms, A. S. Glycobiology 1995, 5, 249-253.
(20) For selected syntheses of 1a, 1b, and 1c, see: (a) Denmark, S. E.;
Martinborough, E. A. J. Am. Chem. Soc. 1999, 121, 3046-3056. (b) Cronin,
L.; Murphy, P. V. Org. Lett. 2005, 7, 2691-2693 and references therein.
(c) Bartnicka, E.; Zamojski, A. Tetrahedron 1999, 55, 2061-2076. (d)
Leeper, F. J.; Howard, S. Tetrahedron Lett. 1995, 36, 2333-2338. (e)
Somfai, P.; Marchand, P.; Torsell, S.; Lindstrom, U. M. Tetrahedron 2003,
59, 1293-1299. (f) Zho, Z.; Song, L.; Marino, P. S. Tetrahedron 2005,
61, 8888-8894. (g) Zhao, H.; Hans, S.; Cheng, X.; Mootoo, D. R. J. Org.
Chem. 2001, 66, 1761-1767. (h) Hamana, H.; Ikota, N.; Ganem, B. J. Org.
Chem. 1987, 52, 5492-5494. (i) Zhao, H.; Mootoo, D. R. J. Org. Chem.
1996, 61, 6762-6763. (j) Zhao, H.; Hans, S.; Cheng, X.; Mootoo, D. R. J.
Org. Chem. 2001, 65, 1761-1767.
(21) These results are consistent with our earlier studies on the 1,3-
addition of methyl- and allyl-magnesium bromide, as well as silyl ketene
acetal of ethyl acetate to nitrone 2, in the presence of TMSOTf (1 equiv)
at -78 °C in THF, which afforded a good diastereoselectivity in the favor
of the D-gluco isomer (∼de 75%), see: (a) Saha, N. N.; Desai, V. N.;
Dhavale, D. D. Tetrahedron 2001, 57, 39-46. (b) Dhavale, D. D.; Jachak,
S. M.; Karche, N. P.; Trombini, C. Synlett 2004, 1549-1552. (c) Dhavale,
D. D.; Desai, V. N.; Sindkhedkar, M.; Mali, R. S.; Castellari, C.; Trombini,
C. Tetrahedron: Asymmetry 1997, 8, 1475-1486.
(22) Pedro Merino et al. reported the reaction of vinylmagnesium bromide
with nitrone 2 using Et2AlCl as a Lewis acid in which 3a and 3b were
obtained in the ratio of 77:23, see: (a) Merino, P.; Anoro, S.; Franco, S.;
Gascon, J. M.; Martin, V.; Merchan, F.; Revuelta, J.; Tejero, T.; Tunon, V.
Synth. Commun. 2000, 2989-3021. (b) Merino, P.; Anoro, S.; Castillo, E.;
Merchan, F. L.; Tejero, T. Tetrahedron: Asymmetry 1996, 7, 1887-1890.
For reviews on the 1,3-addition of organometallic reagents to nitrones,
see: (c) Lombardo, M.; Trombini, C. Curr. Org. Chem. 2002, 6, 695-713
and references therein.
(23) The 1H and 13C NMR spectra of compounds 5a,b and 6a,b, in which
a N-Cbz group is present, showed doubling of signals. This was due to
isomerization by restricted rotation around CdN, see: Applications of NMR
spectroscopy in organic chemistry; Jackman, L. M., Sternhell, S., Eds.;
Pergamon: Elmsford, NY, 1978; p 361.
4668 J. Org. Chem., Vol. 71, No. 12, 2006