Organic Process Research & Development
Article
(9) Kirkpatrik, W. J. U. S. Patent 2,393,915, 1946
(10) Parikh, P. A. Chem. Eng. J. 1994, 54, 79.
(11) Gurvich, L. G. J. Russ. Phys. Chem. Soc. 1915, 47, 827.
(12) Volzone, C.; Masini, O.; Comelli, N. A.; Grzona, L. M.; Ponzi,
E. N.; Ponzi, M. I. Appl. Catal. A: General 2001, 214, 213.
(13) Wystrach, V. P.; Barnum, L. H.; Garber, M. J. Am. Chem. Soc.
1957, 79, 5786.
β-Pinene yielded other products as shown in a typical GC-
FID chromatogram shown in Figure S3. In the C10 region, the
formation of myrcene was confirmed by a GC-mass spectral
analysis that showed a molecular ion peak at m/z = 136, a base
peak at m/z = 93, and other fragment peaks that were
superimposable on those of an authentic sample of myrcene. In
addition there were several peaks in the diterpene C20 region of
the GC/FID that remained to be identified.39
(14) Roberge, D. M.; Buhl, D.; Niederer, J. P. M.; Holderich, W. F.
Appl. Catal., A: General 2001, 215, 111.
̈
The main product from α- and β-pinenes in pressurized hot
water without exclusion of air was similarly identified as p-
cymene with a strong parent peak at m/z = 134 and other
characteristic fragment peaks that matched with those of the
authentic sample.
(15) Terpin-Werke, German Patent 223,795, 1907.
(16) Uematsu, M.; Franck, E. U. Ber. Bunsenges. Phys. Chem 1980, 95,
1586; J. Phys. Chem. Ref. Data 1980, 9, 1291.
(17) Fernandez, D. P.; Goodwin, A. R. H.; Lemmon, E. W.; Sengers,
J. M. H. L.; Williams, R. C. J. Phys. Chem. Ref. Data 1997, 26, 1125.
(18) Schneider, G. M. Ber. Bunsenges, Phys. Chem. 1972, 76, 325.
(19) Marshall, W. L.; Franck, E. U. J. Phys. Chem. Ref. Data 1981, 10,
295.
(20) Sasaki, M.; Kabyemela, B.; Malaluan, R.; Hirose, S.; Takeda, N.;
Adschiri, T.; Arai, K. J. Supercrit. Fluids 1998, 13, 261.
(21) Sasaki, M.; Fang, Z.; Fukushima, Y.; Adschiri, T.; Arai, K. Ind.
Eng. Chem. Res. 2005, 44, 1226.
(22) Aida, T. M.; Tajima, K.; Watanabe, M.; Saito, Y.; Kuroda, K.;
Nonaka, T.; Hattori, H.; Smith, R. L., Jr.; Arai, K. J. Supercrit. Fluids
2007, 42, 110.
ASSOCIATED CONTENT
* Supporting Information
■
S
i. Eight tables of numerical data on the reactions of α- and β-
pinenes, limonene, and myrcene in hot pressurized water
constituting Figures 1−7. ii. A temperature−pressure−density
diagram for water with explanation. iii. Two GC chromato-
grams for the reaction mixture of α- and β-pinenes in hot
pressurized water. This material is available free of charge via
(23) Savage, P. E.; Gopalan, S.; Mizan, T. I.; Martino, C. J.; Brock, E.
E. AIChE J. 1995, 41, 1723.
(24) Katritzky, A. R.; Allin, S. M.; Siskin, M. Acc. Chem. Res. 1996, 29,
399.
(25) Savage, P. E. Chem. Rev. 1999, 99, 603.
(26) Kruse, A.; Dinjus, E. J. Supercrit. Fluids 2007, 39, 362.
(27) Liotta, C. L.; Hallett, J. P.; Pollet, P.; Eckert, C. A. Reactions in
AUTHOR INFORMATION
Corresponding Authors
Notes
■
Nearcritical Water, In Organic Reactions in Water; Lindstrom, U. M.,
̈
Ed.; Blackwell Publishing, 2007; Chapter 9.
The authors declare no competing financial interest.
(28) Sully, B. D. Chem. Ind. (London) 1964, 263.
(29) Bauer, K.; Garbe, D. Common Flavor and Fragrance Materials;
VCH: Weinheim, 1985.
(30) Szuppa, T.; Stolle, A.; Ondruschka, B. Org. Biomol. Chem. 2010,
8, 1560.
(31) Miura, H. Development of Organic Reaction Processes by the Flow
System Using Pressurized Hot Water, Masters Thesis; College of
Industrial Technology, Nihon University, 2011.
(32) Saida, K. to be published in Thesis for the master’s degree,
College of Industrial Technology, Nihon University, 2014.
(33) Anikeev, V. I. Flavour Fragrance J. 2010, 25, 443.
(34) Stanislaus, A.; Yeddanapalli, L. M. Can. J. Chem. 1972, 50, 113.
(35) Xu, Z.-B.; Qu, J. Chem.Eur. J. 2013, 19, 314.
(36) Gratien, A.; Johnson, S. N.; Ezell, M. J.; Dawson, M. L.; Bennett,
R.; Finlayson-Pitts, B. J. Environ. Sci. Technol. 2011, 45, 2755.
(37) Thornton, T. D.; Savage, P. E. J. Supercrit. Fluids 1990, 3, 240.
(38) Adschiri, T.; Kanazawa, K.; Arai, K. J. Am. Ceram. Soc. 1992, 75,
1019.
ACKNOWLEDGMENTS
■
This paper was presented in part at the First International
Symposium on Process Chemistry-ISPC 08 in July 28−30,
2008 in Kyoto. We dedicate this paper to the memory of
Professor Wesley Cocker (1908−2007), Trinity College
Dublin, in recognition of his personal suggestion and
encouragement as early as in 1969 of an importance of new
approaches to pinene chemistry. We thank Mr. Kohei Saida for
his help in obtaining the additional data on the effect of the
amount of water on the yield of limonene from α-pinene and
his generosity in disclosing his thesis work prior to publication.
This research was supported in part by a Grant in Aid from the
Ministry of Education, Culture, Sports, Science, and Technol-
ogy for promoting multidisciplinary research projects.
(39) Cataldo, F.; Keheyan, Y. Radiat. Phys. Chem. 2006, 75, 572.
(40) Wagner, W.; Pruss, A. J. Phys. Chem. Ref. Data 2002, 31, 387.
(41) Mitzner, B. M.; Theimer, E. T.; Freeman, S. K. Appl. Spectrosc.
1965, 19, 169.
REFERENCES
■
(1) Coppen, J. J. W.; Hone, G. A. Non−wood Forest Products 2, Gum
Naval Stores: Turpentine and Rosin from Pine Resin; Natural Resources
Inst., FAO of UN, FAO Corporate Document Repository, Rome,
1995. Another estimate is 263,000 tons in 1999 by: Morris, M. The
Global Supply Position for Turpentine, Proceeding of Papers Presented
at the IFEAT 2000 International Conference − Aroma Chemicals 2000 &
Beyond; Florida, USA; 29 Oct − 2 Nov 2000; pp 17−31.
(2) Berthelot, M. Ann. Chim. [iii] 1853, 39, 9.
(3) Wallach, O. Ann. Chem. 1885, 227, 282.
(4) Costa, M. C. C.; Johnstone, R. A. W.; Whittaker, D. J. Mol. Catal.
A: Chem. 1996, 104, 251.
(5) Stolle, A.; Bonrath, W.; Ondruschka, B. J. Anal. Appl. Pyrolysis
2008, 83, 26.
(6) Kolicheski, M. B.; Cocco, L. C.; Mitchell, D. A.; Kamiski, M. J.
Anal. Appl. Pyrolysis 2005, 80, 92.
(7) Fuguitt, R. E.; Hawkins, J. E. J. Am. Chem. Soc. 1945, 67, 242.
(8) Savich, T. R.; Goldblatt, L. A. J. Am. Chem. Soc. 1945, 67, 2027.
1491
dx.doi.org/10.1021/op4000863 | Org. Process Res. Dev. 2013, 17, 1485−1491