CHART 1
Novel and Efficient Syntheses of (-)-Methyl
4-epi-Shikimate and 4,5-Epoxy-Quinic and
-Shikimic Acid Derivatives as Key Precursors to
Prepare New Analogues
Laura Sa´nchez-Abella, Susana Ferna´ndez, Nuria Armesto,
Miguel Ferrero, and Vicente Gotor*
Departamento de Qu´ımica Orga´nica e Inorga´nica and Instituto
UniVersitario de Biotecnolog´ıa de Asturias, UniVersidad de
OViedo, 33006-OViedo (Asturias), Spain
CHART 2
ReceiVed March 21, 2006
We have developed simple methods that provide a rapid entry
into the synthesis of a series of quinate and shikimate
analogues, including (-)-methyl 4-epi-shikimate and the 4,5-
epoxy analogues of the parent acids. Epoxy derivatives of
quinic and shikimic acids were converted into methyl scyllo-
quinate and (+)-methyl 3-epi-shikimate, respectively, by
processes involving a regio- and stereoselective epoxide ring
opening. The strategies described take place through short,
high-yield reaction sequences.
In addition, quinic and shikimic acid epimers are important
derivatives. Improved syntheses of 3-epi-9 and 5-epi-10 analogues
of both acids have been reported. However, only a limited
number of syntheses of the 4-epi isomer have been reported in
the literature, although the 4-epi-shikimic acid skeleton is a
constituent of several natural products such as dioxolamycin
(7),11 cythiaformines B, C, and D (8, 9, and 10, respectively),12
and pericosine A (11;13 Chart 2). There are two published
asymmetric syntheses of 4-epi-shikimic acid derivatives based
on a Diels-Ader reaction. In 1986, Posner and Wettlaufer
The shikimate pathway is the biosynthetic sequence that links
the metabolism of carbohydrates to the biosynthesis of aromatic
amino acids, folate coenzymes, and various isoprenoid quino-
nes.1 Additionally, all the intermediates can also be considered
branch point compounds that may serve as substrates for other
metabolic pathways. This route is exclusively present in plants,
fungi, and microorganisms.2 The complete absence in mammals
makes shikimate-pathway enzymes potential targets for nontoxic
herbicides, antimicrobial agents, and antifungal agents.3 Another
relevant fact is the evidence of this pathway in apicomplexa
parasites (malaria, pneumonia, tuberculosis), opening a new field
in the design of new antiparasite compounds.4
The syntheses of quinic and shikimic acids (1 and 2,
respectively, Chart 1) as well as their analogues, have been an
active area of research with a view to the study of enzymatic
mechanisms and to the design and synthesis of inhibitors.5 Potent
and selective inhibitors of influenza neuraminidase, such as
oseltamivir (3) and GS-4071 (4),6 the glyoxalase I inhibitor
COCT (5),7 or the potent R-glycosidase inhibitor valiolamine
(6),8 are some key examples of such analogues (Chart 2).
(4) (a) Coombs, G. H.; Muller, S. Int. J. Parasitol. 2002, 32, 497-508.
(b) Roberts, C. W.; Roberts, F.; Lyons, R. E.; Kirisits, M. J.; Mui, E. J.;
Finnerty, J.; Johnson, J. J.; Ferguson, D. J. P.; Coggins, J. R.; Krell, T.;
Coombs, G. H.; Milhous, W. K.; Kyle, D. E.; Tzipori, S.; Barnwell, J.;
Dame, J. B.; Carlton, J.; McLeod. J. Infect. Dis. 2002, 185, S25-S36. (c)
Roberts, F.; Roberts, C. W.; Johnson, J. J.; Kyle, D. E.; Krell, T.; Coggins,
J. R.; Coombs, G. H.; Milhous, W. K.; Tzipori, S.; Ferguson, D. J. P.;
Chakrabarti, D.; Mcleod, R. Nature 1998, 393, 801-805.
(5) (a) Jiang, S.; Singh, G.; Boam, D. J.; Coggins, J. R. Tetrahedron:
Asymmetry 1999, 10, 4087-4090. (b) Brettle, R.; Cross, R.; Frederickson,
M.; Haslam, E.; MacBeath, F. S.; Davies, G. M. Tetrahedron 1996, 52,
10547-10556. (c) Adams, H.; Bailey, N. A.; Brettle, R.; Cross, R.;
Frederickson, M.; Haslam, E.; MacBeath, F. S.; Davies, G. M. Tetrahedron
1996, 52, 8565-8580.
(6) Abrecht, S.; Harrington, P.; Iding, H.; Karpf, M.; Trussardi, R.; Wirz,
B.; Zutter, U. Chimia 2004, 58, 621-629.
(7) Kamiya, D.; Uchiata, Y.; Ichikawa, E.; Kato, K.; Umezawa, K.
Bioorg. Med. Chem. Lett. 2005, 15, 1111-1114.
(8) (a) Ogawa, S.; Ohoshi, Y.; Asada, M.; Tomoda, A.; Takahashi, A.;
Ooki, Y.; Mori, M.; Itoh, M.; Korenaga, T. Org. Biomol. Chem. 2004, 2,
884-889. (b) Carballido, M.; Castedo, L.; Gonza´lez-Bello, C. Eur. J. Org.
Chem. 2004, 3663-3668.
(1) (a) Abell, C. Enzymology and Molecular Biology of the Shikimate
Pathway. In ComprehensiVe Natural Products Chemistry; Barton, D. H.
R., Nakanishi, K., Meth-Cohn, O., Sankawa, U., Eds.; Elsevier: Amsterdam,
1999; Vol. 1, pp 573-607. (b) Haslam, E. Shikimic Acid Metabolism and
Metabolites; Wiley: New York, 1993. (c) Weiss, U.; Edwards, J. M. The
Biosynthesis of Aromatic Compounds; Wiley-Interscience: New York, 1987;
pp 260-270.
(2) Kishore, G. M.; Shah, D. M. Annu. ReV. Biochem. 1988, 57, 627-
663.
(3) Jiang, S.; Singh, G. Tetrahedron 1998, 54, 4697-4753.
(9) Armesto, N.; Ferrero, M.; Ferna´ndez, S.; Gotor, V. Tetrahedron Lett.
2000, 41, 8759-8762 and references therein.
(10) Ferna´ndez, S.; D´ıaz, M.; Ferrero, M.; Gotor, V. Tetrahedron Lett.
1997, 38, 5225-5228 and references therein.
10.1021/jo0606249 CCC: $33.50 © 2006 American Chemical Society
Published on Web 05/26/2006
5396
J. Org. Chem. 2006, 71, 5396-5399