Communications
[14] D. M. Ratner, E. W. Adams, J. Su, B. R. OꢀKeefe, M. Mrksich,
P. H. Seeberger, ChemBioChem 2004, 5, 379.
[15] S. Angeloni, J. L. Ridet, N. Kusy, H. Gao, F. Crevoisier, S.
Guinchard, S. Kochhar, H. Sigrist, N. Sprenger, Glycobiology
2005, 15, 31.
example, RCA120 showed little or no binding within the
concentration range tested to a number of Gal and GalNAc
terminal carbohydrates such as GalNAca1-4Galb, Gal-
NAca1-3Galb, Galb1-6Mana, GalNAcb1-4Gal, BG-A, Lea,
and Lex. Although this aspect of lectin recognition is known,
detailed information on secondary binding requirements is
not available for most lectins. Carbohydrate microarrays
provide rapid access to comprehensive binding profiles.
Second, lectin specificity can be difficult to predict based on
binding (or lack of binding) to closely related structures. For
example, the GalNAc binding lectin SBA showed little or no
binding to the Gala monosaccharide and the Gala1-3Gal
disaccharide. However, SBA bound very well to Gb3 (DL =
65 pm, Gala1-4Galb1-4Glc). Therefore, it is critical to eval-
uate binding to a wide range of carbohydrates.
In summary, a carbohydrate microarray was used to
evaluate over 1700 potential lectin–ligand interactions over a
range of lectin concentrations. The format allowed for very
rapid analysis with a minimal amount of expensive and
difficult to obtain carbohydrates. For comparison, an ELLA
assay carried out in 96-well plates would have required at
least 150 plates and 100-fold larger quantities of each BSA
conjugate and protein. The unexpected binding properties
uncovered in this study and the extensive binding information
obtained highlight the utility of carbohydrate microarrays for
rapid evaluation of carbohydrate–protein interactions.
[16] M. B. Biskup, J. U. Muller, R. Weingart, R. R. Schmidt, Chem-
BioChem 2005, 6, 1007.
[17] B. S. Bochner, R. A. Alvarez, P. Mehta, N. V. Bovin, O. Blixt,
J. R. White, R. L. Schnaar, J. Biol. Chem. 2005, 280, 4307.
[18] D. A. Calarese, H. K. Lee, C. Y. Huang, M. D. Best, R. D.
Astronomo, R. L. Stanfield, H. Katinger, D. R. Burton, C. H.
Wong, I. A. Wilson, Proc. Natl. Acad. Sci. USA 2005, 102, 13372.
[19] V. I. Dyukova, E. I. Dementieva, D. A. Zubtsov, O. E. Galanina,
N. V. Bovin, A. Y. Rubina, Anal. Biochem. 2005, 347, 94.
[20] K. S. Ko, F. A. Jaipuri, N. L. Pohl, J. Am. Chem. Soc. 2005, 127,
13162.
[21] J. Manimala, Z. Li, A. Jain, S. VedBrat, J. C. Gildersleeve,
ChemBioChem 2005, 6, 2229.
[22] I. Shin, S. Park, M. R. Lee, Chem. Eur. J. 2005, 11, 2894.
[23] S. J. van Vliet, E. van Liempt, E. Saeland, C. A. Aarnoudse, B.
Appelmelk, T. Irimura, T. B. H. Geijtenbeek, O. Blixt, R.
Alvarez, I. van Die, Y. van Kooyk, Int. Immunol. 2005, 17, 661.
[24] M. Vila-Perello, R. G. Gallego, D. Andreu, ChemBioChem 2005,
6, 1831.
[25] C. Y. Huang, D. A. Thayer, A. Y. Chang, M. D. Best, J.
Hoffmann, S. Head, C. H. Wong, Proc. Natl. Acad. Sci. USA
2006, 103, 15.
[26] J. C. Kehr, Y. Zilliges, A. Springer, M. D. Disney, D. D. Ratner,
C. Bouchier, P. H. Seeberger, N. T. de Marsac, E. Dittmann, Mol.
Microbiol. 2006, 59, 893.
[27] M. M. Ngundi, C. R. Taitt, S. A. McMurry, D. Kahne, F. S. Ligler,
Biosens. Bioelectron. 2006, 21, 1195.
Received: February 14, 2006
Published online: April 26, 2006
[28] Different lectins contain different levels of biotin incorporation.
As the biotin/lectin ratio will affect the detection limit, the
results for different lectins should be compared qualitatively
rather than quantitatively.
[29] Some epitopes contain a thioglycoside linker at the reducing end
of the sugar. Although the linker can potentially affect
recognition, inhibition was also observed with sugar lactols
(see the Supporting Information).
[30] Although possible, several lines of evidence suggest that the
observed binding is not due to a minor glycoprotein impurity.
First, the manufacturer states that the HSA is non-glycosylated,
greater than 99% pure, and essentially free of globulins. Second,
binding to HSA was not observed with other lectins with similar
specificity. Recognition of proteins/peptides by carbohydrate-
binding proteins has been reported previously; for examples, see
A. Pashov, M. Perry, M. Dyar, M. Chow, T. Kieber-Emmons,
Curr. Top. Med. Chem. 2005, 5, 1171 and K. R. Oldenburg, D.
Loganathan, I. J. Goldstein, P. G. Schultz, M. A. Gallop, Proc.
Natl. Acad. Sci. USA 1992, 89, 5393.
Keywords: carbohydrates · glycoconjugates · glycosides ·
.
lectins · microarrays
[1] H. Lis, N. Sharon, Chem. Rev. 1998, 98, 637.
[2] N. Sharon, H. Lis, Glycobiology 2004, 14, 53R.
[3] P. Schoffski, S. Riggert, P. Fumoleau, M. Campone, O. Bolte, S.
Marreaud, D. Lacombe, B. Baron, M. Herold, H. Zwierzina, K.
Wilhelm-Ogunbiyi, H. Lentzen, C. Twelves, Ann. Oncol. 2004,
15, 1816.
[4] B. T. Houseman, M. Mrksich, Chem. Biol. 2002, 9, 443.
[5] E. W. Adams, J. Ueberfeld, D. M. Ratner, B. R. OꢀKeefe, D. R.
Walt, P. H. Seeberger, Angew. Chem. 2003, 115, 5475; Angew.
Chem. Int. Ed. 2003, 42, 5317.
[6] M. Schwarz, L. Spector, A. Gargir, A. Shtevi, M. Gortler, R. T.
Altstock, A. A. Dukler, N. Dotan, Glycobiology 2003, 13, 749.
[7] D. N. Wang, Proteomics 2003, 3, 2167.
[8] O. Blixt, S. Head, T. Mondala, C. Scanlan, M. E. Huflejt, R.
Alvarez, M. C. Bryan, F. Fazio, D. Calarese, J. Stevens, N. Razi,
D. J. Stevens, J. J. Skehel, I. van Die, D. R. Burton, I. A. Wilson,
R. Cummings, N. Bovin, C. H. Wong, J. C. Paulson, Proc. Natl.
Acad. Sci. USA 2004, 101, 17033.
[9] M. C. Bryan, F. Fazio, H. K. Lee, C. Y. Huang, A. Chang, M. D.
Best, D. A. Calarese, C. Blixt, J. C. Paulson, D. Burton, I. A.
Wilson, C. H. Wong, J. Am. Chem. Soc. 2004, 126, 8640.
[10] M. D. Disney, P. H. Seeberger, Chem. Biol. 2004, 11, 1701.
[11] T. Feizi, W. G. Chai, Nat. Rev. Mol. Cell Biol. 2004, 5, 582.
[12] C. Galustian, C. G. Park, W. G. Chai, M. Kiso, S. A. Bruening,
Y. S. Kang, R. M. Steinman, T. Feizi, Int. Immunol. 2004, 16, 853.
[13] L. Nimrichter, A. Gargir, M. Gortler, R. T. Altstock, A. Shtevi,
O. Weisshaus, E. Fire, N. Dotan, R. L. Schnaar, Glycobiology
2004, 14, 197.
3610
ꢀ 2006 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Angew. Chem. Int. Ed. 2006, 45, 3607 –3610