Angewandte Chemie - International Edition p. 18817 - 18822 (2019)
Update date:2022-08-02
Topics:
Rodon Fores, Jennifer
Criado-Gonzalez, Miryam
Chaumont, Alain
Carvalho, Alain
Blanck, Christian
Schmutz, Marc
Serra, Christophe A.
Boulmedais
Schaaf, Pierre
Jierry, Lo?c
Inspired by biology, one current goal in supramolecular chemistry is to control the emergence of new functionalities arising from the self-assembly of molecules. In particular, some peptides can self-assemble and generate exceptionally catalytically active fibrous networks able to underpin hydrogels. Unfortunately, the mechanical fragility of these materials is incompatible with process developments, relaying this exciting field to academic curiosity. Here, we show that this drawback can be circumvented by enzyme-assisted self-assembly of peptides initiated at the walls of a supporting porous material. We applied this strategy to grow an esterase-like catalytically active supramolecular hydrogel (CASH) in an open-cell polymer foam, filling the whole interior space. Our supported CASH material is highly efficient towards inactivated esters and enables the kinetic resolution of racemates. This hybrid material is robust enough to be used in continuous flow reactors, and is reusable and stable over months.
View MoreContact:+44 (0)161 367 9441
Address:
Contact:+86 512 6287 2180
Address:398 Ruoshui Road, Suzhou Industrial Park, Suzhou, Jiangsu, P. R. China
Zipont chem(wuhan)Tech co.,Ltd
Contact:+86-27-87587198
Address:wuhan
Shandong LuZhou Amino Acid Co., Ltd
Contact:86-539-2218025
Address:yishui economic and technical development zone zhenxing south road
Shanghai PuYi Chem-Tech Co.,Ltd.
Contact:+86-21-57687505-227
Address:3 Floor, Building 11, No 201 MinYi Road, Songjiang District, Shanghai 201612, China
Doi:10.1016/j.bmcl.2004.06.081
(2004)Doi:10.1007/BF00955295
(1981)Doi:10.1016/S0040-4020(98)01137-5
(1999)Doi:10.1039/c39800000589
(1980)Doi:10.1021/ja01652a107
(1954)Doi:10.1080/10426500490459641
(2004)